-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinux_ppo_vec_envs_image copy.py
258 lines (220 loc) · 10.8 KB
/
linux_ppo_vec_envs_image copy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
#Modified this code - https://github.com/DeepReinforcementLearning/DeepReinforcementLearningInAction/blob/master/Chapter%204/Ch4_book.ipynb
#Also, modified this code - https://github.com/higgsfield/RL-Adventure-2/blob/master/1.actor-critic.ipynb
# Also, modified this code - https://github.com/ericyangyu/PPO-for-Beginners/blob/9abd435771aa84764d8d0d1f737fa39118b74019/ppo.py#L151
# Got a lot of help from the subreddit - reinforcement_learning
#Incorporated ideas from here - https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
if __name__ == '__main__':
import numpy as np
import gymnasium as gym
from gymnasium.wrappers import AtariPreprocessing
import torch
import random
import matplotlib.pyplot as plt
from torch import nn
import torchvision as tv
import torch.nn.functional as F
torch.manual_seed(798)
import matplotlib.pyplot as plt
torch.manual_seed(0)
random.seed(0)
np.random.seed(0)
from collections import deque
from torch.optim.lr_scheduler import MultiStepLR
num_envs = 12
ent_coeff = 0.1
batches = 4
channels = 3
learning_rate = 0.0003
episodes = 1500
gae_lambda = 0.95
stack_num = 8
num_channels = stack_num
gamma = 0.99
clip = 0.2
rollout_steps = 400
training_iters = 4
grad_clip = 0.5
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
import envpool
env = envpool.make("Breakout-v5", env_type="gymnasium", num_envs=num_envs, stack_num = stack_num, episodic_life = True)
print("envpool observation_space.shape = ", env.observation_space.shape)
print("envpool action_space.n= ", env.action_space.n)
# env = AtariPreprocessing(env)
# env = gym.vector.make("BreakoutNoFrameskip-v4", num_envs=num_envs,wrappers=AtariPreprocessing)
actor_PATH = './actor_model' + 'breakout' + '.pt'
critic_PATH = './critic_model ' + 'pong'+ '.pt'
square_size = env.observation_space.shape[-1]
print("square_size = ", square_size)
class Actor(nn.Module):
def __init__(self, state_size, action_size):
super(Actor, self).__init__()
self.state_size = state_size
self.action_size = action_size
self.conv1 = nn.Conv2d(num_channels, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 3)
self.conv3 = nn.Conv2d(16, 32, 3)
self.fc1 = nn.Linear(2048, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, action_size)
self.last = nn.Softmax(dim=-1)
def forward(self,x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = self.pool(F.relu(self.conv3(x)))
x = torch.flatten(x, 1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
x = self.last(x)
return x
class Critic(nn.Module):
def __init__(self, state_size, action_size):
super(Critic, self).__init__()
self.state_size = state_size
self.action_size = action_size
self.conv1 = nn.Conv2d(num_channels, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 3)
self.conv3 = nn.Conv2d(16, 32, 3)
self.fc1 = nn.Linear(2048, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 1)
def forward(self, x):
x = x.reshape(-1, stack_num, square_size, square_size)
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = self.pool(F.relu(self.conv3(x)))
x = torch.flatten(x, 1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
actor = Actor(env.observation_space.shape[-1], env.action_space.n).to(device)
critic = Critic(env.observation_space.shape[-1], 1).to(device)
policy_opt = torch.optim.Adam(params = actor.parameters(), lr = learning_rate)
value_opt = torch.optim.Adam(params = critic.parameters(), lr = learning_rate)
policy_scheduler = MultiStepLR(policy_opt, milestones = [700], gamma=0.1,verbose=True)
value_scheduler = MultiStepLR(policy_opt, milestones = [700], gamma=0.1,verbose=True)
obs = torch.tensor(env.reset()[0], dtype=torch.float32).to(device)
tot_rewards = np.array([0 for i in range(num_envs)], dtype=float)
final_scores = []
last_n_rewards = deque(maxlen=10)
def rollout(obs): #todo Why can't the rollout function access it from outside?
all_rewards = []
all_actions = []
all_actions_probs = []
all_observations = []
all_dones = []
global tot_rewards #todo Why did I have to declare tot_rewards as global?
for i in range(rollout_steps):
obs = obs.reshape(num_envs, stack_num, square_size, square_size)
act_probs = torch.distributions.Categorical(actor(obs.to(device)).squeeze())
action = act_probs.sample().squeeze()
action = action.cpu().detach().numpy()
next_state, reward, done, truncated, info = env.step(action)
action = torch.tensor(action, dtype=torch.float32).to(device)
# These statistics help determine how well the agent is performing.
tot_rewards += reward
for reward_val, done_val in zip(tot_rewards, done):
if done_val:
last_n_rewards.append(reward_val)
final_scores.append(reward_val)
tot_rewards[done] = 0
all_rewards.append(reward)
all_dones.append(done)
all_observations.append(obs.cpu().detach().numpy())
all_actions.append(action.cpu().detach().numpy())
all_actions_probs.append(act_probs.log_prob(action).cpu().detach().numpy())
obs = torch.tensor(next_state, dtype=torch.float32)
# Computing advantages over here, A = Q - V and returns, Q = V + A
eps_rew = critic(obs.to(device)).cpu().detach().numpy().reshape(-1)
next_adv = np.array([0 for i in range(num_envs)], dtype=float)
batch_obs = torch.Tensor(all_observations).reshape(-1, stack_num*num_envs, square_size, square_size)
val_next_state = eps_rew.copy()
state_value_list = []
inv_eps_adv_list = []
inv_eps_ret_list = []
for reward,done,obs in zip(reversed(all_rewards), reversed(all_dones), reversed(batch_obs)):
next_adv[done] = 0
val_next_state[done] = 0
val_current_state = critic(obs.to(device)).cpu().detach().numpy().reshape(-1)
delta = reward + gamma*val_next_state-val_current_state
adv = delta + gae_lambda * gamma * next_adv
returns = val_current_state + adv
inv_eps_adv_list.append(adv)
inv_eps_ret_list.append(returns)
next_adv = adv.copy()
val_next_state = val_current_state.copy()
final_adv_list = []
for a in reversed(inv_eps_adv_list):
final_adv_list.append(a)
for a in reversed(inv_eps_ret_list):
state_value_list.append(a)
# Returning all the data from the rollout. `obs` needs to be returned because the episode might not be over
# for some environment
batch_obs = torch.Tensor(all_observations).reshape(-1,env.observation_space.shape[1]).to(device)
batch_act = torch.Tensor(np.array(all_actions).reshape(-1)).to(device)
batch_log_probs = torch.Tensor(np.array(all_actions_probs).reshape(-1)).to(device)
batch_rtgs = torch.Tensor(state_value_list).reshape(-1).to(device)
batch_advantages = torch.Tensor(final_adv_list).reshape(-1).to(device)
return batch_obs, batch_act, batch_log_probs, batch_rtgs, batch_advantages, obs
#Learning Phase
for episode in range(episodes):
print("episodes = ", episode)
all_obs, all_act, all_log_probs, all_rtgs, all_advantages, obs = rollout(obs)
all_obs = all_obs.reshape(-1, stack_num, square_size, square_size)
assert (all_obs.shape == (rollout_steps*num_envs, num_channels, square_size, square_size))
assert (all_act.shape == (rollout_steps*num_envs,))
assert (all_log_probs.shape == (rollout_steps*num_envs,))
assert (all_rtgs.shape == (rollout_steps*num_envs,))
assert (all_advantages.shape == (rollout_steps*num_envs,))
# Standardize all advantages
all_advantages = (all_advantages - all_advantages.mean()) / (all_advantages.std() + 1e-8)
for i in range(training_iters):
print("Training Iteration = ", i)
total_examples = num_envs * rollout_steps
batch_size = total_examples // batches
batch_starts = np.arange(0, total_examples, batch_size)
indices = np.arange(total_examples, dtype=np.int32)
np.random.shuffle(indices)
for batch_start in batch_starts:
batch_end = batch_start + batch_size
batch_index = indices[batch_start:batch_end]
batch_obs = all_obs[batch_index]
batch_act = all_act[batch_index]
batch_log_probs = all_log_probs[batch_index]
batch_rtgs = all_rtgs[batch_index]
batch_advantages = all_advantages[batch_index]
value = critic(batch_obs).squeeze()
assert(value.ndim==1)
policy = actor(batch_obs)
act_probs = torch.distributions.Categorical(policy)
batch_entropy = act_probs.entropy().mean()
log_probs = act_probs.log_prob(batch_act).squeeze()
ratios = torch.exp(log_probs - batch_log_probs)
assert(ratios.ndim==1)
surr1 = ratios*batch_advantages
assert (surr1.ndim == 1)
surr2 = torch.clamp(ratios, 1 - clip, 1 + clip)*batch_advantages
assert (surr2.ndim == 1)
actor_loss = -torch.min(surr1, surr2).mean() - ent_coeff*batch_entropy
critic_loss = (value - batch_rtgs).pow(2).mean()
policy_opt.zero_grad()
actor_loss.backward()
# Gradient Clipping
torch.nn.utils.clip_grad_norm_(actor.parameters(), grad_clip)
policy_opt.step()
value_opt.zero_grad()
critic_loss.backward()
# Gradient Clipping
torch.nn.utils.clip_grad_norm_(critic.parameters(), grad_clip)
value_opt.step()
value_scheduler.step()
policy_scheduler.step()
if episode % 100 == 0:
print("Saved")
torch.save(actor.state_dict(), actor_PATH)
torch.save(critic.state_dict(), critic_PATH)
plt.plot(final_scores)
plt.show()