-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdqn_training.py
144 lines (112 loc) · 5.34 KB
/
dqn_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import typing as tp
from pathlib import Path
import yaml
from collections import deque
import numpy as np
import torch
from rlgym.envs import Match
from rlgym.utils.terminal_conditions.common_conditions import TimeoutCondition, GoalScoredCondition
from rlgym_tools.sb3_utils import SB3MultipleInstanceEnv
from ppocket_rocket.state_predictor import StatePredictorModel
from ppocket_rocket.game_data import ModelDataProvider
from ppocket_rocket.training import DqnTrainer, ReplayBuffer, DqnEpisodeDataRecorder
from ppocket_rocket.training import GymActionParser, GymObsBuilder, GeneralReward
from ppocket_rocket.training import RandomBallGameState
def fix_data(data) -> tp.List[torch.Tensor]:
"""
This is a workaround to fix the bug inside sb3. Just reformat output data.
"""
if isinstance(data, torch.Tensor):
return [data]
out = []
for d in data:
if len(d) == 0:
continue
if isinstance(d, torch.Tensor):
out.append(d)
continue
assert isinstance(d, list)
for e in d:
assert isinstance(e, torch.Tensor)
out.append(e)
return out
def dqn_training(num_instances: int):
device = 'cuda'
cfg = yaml.safe_load(open(Path('ppocket_rocket') / 'dqn_cfg.yaml', 'r'))
replay_buffer_cfg = dict(cfg['replay_buffer'])
min_rp_data_size = int(replay_buffer_cfg['min_buffer_size'])
discount_factor = float(cfg['rollout']['discount_factor'])
model_data_provider = ModelDataProvider()
state_predictor = StatePredictorModel.build_model(cfg['model'], model_data_provider)
rnn_backbone = state_predictor.rnn_core.to(device).eval()
rnn_backbone.freeze()
del state_predictor
action_parser = GymActionParser(model_data_provider)
obs_builder = GymObsBuilder(model_data_provider, double_mirror=True)
general_reward = GeneralReward(discount_factor=discount_factor)
replay_buffer = ReplayBuffer()
trainer = DqnTrainer(cfg, replay_buffer, device)
num_cars = 2
ep_data_recorders = [DqnEpisodeDataRecorder(trainer, rnn_backbone=rnn_backbone)
for _ in range(num_cars * num_instances * 2)]
def get_match():
return Match(
reward_function=general_reward,
terminal_conditions=[TimeoutCondition(300 * 10), GoalScoredCondition()],
obs_builder=obs_builder,
state_setter=RandomBallGameState(),
action_parser=action_parser,
game_speed=100, tick_skip=12, spawn_opponents=True, team_size=1
)
env = SB3MultipleInstanceEnv(match_func_or_matches=get_match,
num_instances=num_instances, wait_time=20)
last_rewards = deque(maxlen=100)
ep_counter = 0
default_action_index = model_data_provider.default_action_index
train_freq = int(cfg['training']['train_freq'])
data_counter = 0
while True:
obs = env.reset()
obs = fix_data(obs)
done = np.array([False for _ in range(num_cars * num_instances)], dtype=bool)
steps = 0
ep_rewards = np.zeros((num_instances * num_cars), dtype=float)
while not done.all():
actions = [ep_data_recorder.get_action(car_obs[0, ...]) if not car_done else default_action_index
for ep_data_recorder, car_obs, car_done in zip(ep_data_recorders, obs, done)]
env.step_async(actions)
if len(replay_buffer) > min_rp_data_size:
data_counter += num_instances * num_cars * 2
if data_counter >= train_freq:
trainer.train_step()
data_counter = data_counter % train_freq
next_obs, rewards, next_done, gameinfo = env.step_wait()
next_obs = fix_data(next_obs)
for car_idx in range(num_instances * num_cars):
if done[car_idx]:
continue
original_obs = obs[car_idx][0, ...]
mirrored_obs = obs[car_idx][1, ...]
m_recorder_idx = car_idx * 2
ep_data_recorders[m_recorder_idx].record(original_obs, actions[car_idx],
rewards[car_idx], next_done[car_idx])
ep_data_recorders[m_recorder_idx + 1].record(mirrored_obs, actions[car_idx],
rewards[car_idx], next_done[car_idx])
ep_rewards += rewards
obs = next_obs
done = np.logical_or(done, next_done)
steps += 1
for reward in ep_rewards:
last_rewards.append(reward)
last_mean_reward = sum(last_rewards) / len(last_rewards)
trainer.add_metric_value('reward', last_mean_reward)
ep_counter += 1
rewards_str = ', '.join([f"{float(reward):.2f}" for reward in ep_rewards])
print(f'Episode: {ep_counter} | Replay buffer size: {len(replay_buffer)} | '
f'Mean rewards: {last_mean_reward:.2f} | Episode Rewards: {rewards_str}')
if __name__ == '__main__':
from argparse import ArgumentParser
args_parser = ArgumentParser()
args_parser.add_argument('-n', '--num_instances', type=int, default=1)
args = args_parser.parse_args()
dqn_training(args.num_instances)