forked from bitcoin-core/btcdeb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvalue.cpp
705 lines (621 loc) · 26.7 KB
/
value.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
#include <secp256k1.h>
#include <secp256k1_schnorrsig.h>
#include <secp256k1_recovery.h>
#include <value.h>
#include <support/allocators/secure.h>
#include <uint256.h>
#include <arith_uint256.h>
#include <pubkey.h>
const uint256 SECP256K1_FIELD_SIZE = uint256S("fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f");
secp256k1_context* secp256k1_context_sign = nullptr;
void ECC_Start();
std::string bech32_hrp = "bcrt";
uint8_t bech32_witness_version = 1;
#define abort(msg...) do { fprintf(stderr, msg); fputc('\n', stderr); return; } while (0)
Value Value::prepare_extraction(const Value& a, const Value& b) {
CScript s;
s << a.data_value() << b.data_value();
return Value(s);
}
bool Value::extract_values(std::vector<std::vector<uint8_t>>& values) {
values.clear();
CScript s(data.begin(), data.end());
CScript::const_iterator pc = s.begin();
opcodetype opcode;
std::vector<uint8_t> vch;
while (pc != s.end()) {
if (!s.GetOp(pc, opcode, vch)) return false;
if (vch.size() == 0) return false; // we only allow push operations here
values.push_back(vch);
}
return true;
}
void Value::verify_sig(bool compact) {
// the value is a script-style push of the sighash, pubkey, and signature
if (type != T_DATA) abort("invalid type (must be data)");
std::vector<std::vector<uint8_t>> args;
if (!extract_values(args) || args.size() != 3) abort("invalid input (needs a sighash, a pubkey, and a signature)");
if (args[0].size() != 32 && args[0].size() != 64) abort("invalid input (sighash must be 32 or 64 bytes)");
const uint256 sighash(args[0]);
if (args[1].size() == 32) {
// new style pubkey, so use schnorr validation
XOnlyPubKey pubkey((uint256(args[1])));
if (!pubkey.IsFullyValid()) abort("invalid x only pubkey");
int64 = pubkey.VerifySchnorr(sighash, args[2]);
if (int64 == 0) {
uint256 sh2;
for (int i = 0; i < 32; ++i) sh2.begin()[i] = sighash.begin()[31-i];
if (pubkey.VerifySchnorr(sh2, args[2])) {
fprintf(stderr, "NOTE: your sighash is probably in reverse order (validation succeeds for flipped sighash)\n");
} else {
uint256 pk2;
for (int i = 0; i < 32; ++i) pk2.begin()[i] = args[1].data()[31-i];
XOnlyPubKey pubkey2(pk2);
if (pubkey2.IsFullyValid() && pubkey2.VerifySchnorr(sighash, args[2])) {
fprintf(stderr, "NOTE: your pubkey is probably in reverse order (validation succeeds for flipped pubkey)\n");
} else if (pubkey2.IsFullyValid() && pubkey2.VerifySchnorr(sh2, args[2])) {
fprintf(stderr, "NOTE: your pubkey and sighash are probably both in reverse order (validation succeeds for flipped pubkey and sighash)\n");
}
}
}
} else {
CPubKey pubkey(args[1]);
if (!pubkey.IsValid()) abort("invalid pubkey");
int64 = compact ? pubkey.VerifyCompact(sighash, args[2]) : pubkey.Verify(sighash, args[2]);
}
type = T_INT;
}
void Value::do_combine_pubkeys() {
if (!secp256k1_context_sign) ECC_Start();
if (type != T_DATA) abort("invalid type (must be data)");
std::vector<std::vector<uint8_t>> args;
if (!extract_values(args) || args.size() != 2) abort("invalid input (needs two pubkeys)");
CPubKey pubkey1(args[0]);
CPubKey pubkey2(args[1]);
if (!pubkey1.IsValid()) abort("invalid pubkey (first)");
if (!pubkey2.IsValid()) abort("invalid pubkey (second)");
const secp256k1_pubkey* d[2];
secp256k1_pubkey pks[2];
if (!secp256k1_ec_pubkey_parse(secp256k1_context_sign, &pks[0], &pubkey1[0], pubkey1.size())) {
abort("failed to parse pubkey 1");
}
d[0] = &pks[0];
if (!secp256k1_ec_pubkey_parse(secp256k1_context_sign, &pks[1], &pubkey2[0], pubkey2.size())) {
abort("failed to parse pubkey 2");
}
d[1] = &pks[1];
secp256k1_pubkey result;
if (!secp256k1_ec_pubkey_combine(secp256k1_context_sign, &result, d, 2)) {
abort("failed to combine pubkeys");
}
data.resize(33);
size_t publen = 33;
secp256k1_ec_pubkey_serialize(secp256k1_context_sign, data.data(), &publen, &result, SECP256K1_EC_COMPRESSED);
}
void Value::do_tweak_pubkey() {
if (!secp256k1_context_sign) ECC_Start();
if (type != T_DATA) abort("invalid type (must be data)");
std::vector<std::vector<uint8_t>> args;
if (!extract_values(args) || args.size() != 2) abort("invalid input (needs a 32 byte value and a public key)");
auto tweak = args[0];
CPubKey pubkey1(args[1]);
if (tweak.size() != 32) abort("invalid tweak value (32 byte value required)");
if (!pubkey1.IsValid()) abort("invalid pubkey");
secp256k1_pubkey pk1;
if (!secp256k1_ec_pubkey_parse(secp256k1_context_sign, &pk1, &pubkey1[0], pubkey1.size())) {
abort("failed to parse pubkey");
}
if (!secp256k1_ec_pubkey_tweak_mul(secp256k1_context_sign, &pk1, tweak.data())) {
abort("tweak was out of range (chance of around 1 in 2^128 for uniformly random 32-byte arrays, or equal to zero");
}
data.resize(33);
size_t publen = 33;
secp256k1_ec_pubkey_serialize(secp256k1_context_sign, data.data(), &publen, &pk1, SECP256K1_EC_COMPRESSED);
}
void Value::do_negate_pubkey() {
if (!secp256k1_context_sign) ECC_Start();
if (type != T_DATA) abort("invalid type (must be data)");
CPubKey pubkey(data);
if (!pubkey.IsValid()) abort("invalid pubkey");
secp256k1_pubkey pk;
if (!secp256k1_ec_pubkey_parse(secp256k1_context_sign, &pk, &pubkey[0], pubkey.size())) {
abort("failed to parse pubkey");
}
if (!secp256k1_ec_pubkey_negate(secp256k1_context_sign, &pk)) {
abort("failed to negate pubkey");
}
data.resize(33);
size_t publen = 33;
secp256k1_ec_pubkey_serialize(secp256k1_context_sign, data.data(), &publen, &pk, SECP256K1_EC_COMPRESSED);
}
Value Value::from_secp256k1_pubkey(const void* secp256k1_pubkey_ptr) {
if (!secp256k1_context_sign) ECC_Start();
size_t clen = CPubKey::SIZE;
CPubKey result;
secp256k1_ec_pubkey_serialize(secp256k1_context_sign, (unsigned char*)result.begin(), &clen, (const secp256k1_pubkey *)secp256k1_pubkey_ptr, SECP256K1_EC_COMPRESSED);
assert(result.size() == clen);
assert(result.IsValid());
return Value(std::vector<uint8_t>(result.begin(), result.end()));
}
inline bool get_arith_uint256(const Value& v, arith_uint256& a) {
switch (v.type) {
case Value::T_INT:
a = arith_uint256(v.int64);
return true;
case Value::T_DATA:
{
uint256 tmp;
memcpy(tmp.begin(), v.data.data(), std::min<size_t>(32, v.data.size()));
a = UintToArith256(tmp);
}
return true;
case Value::T_OPCODE:
fprintf(stderr, "invalid type: opcode\n");
return false;
case Value::T_STRING:
fprintf(stderr, "invalid type: string\n");
}
return false;
}
inline void add(std::vector<uint8_t>& data, arith_uint256 a, arith_uint256 b, arith_uint256 g) {
arith_uint256 c = a + b;
if (!g.EqualTo(0) && (c >= g || c < a)) {
// left case is trivial. right case:
// g = 0xffe
// a = 0xffd
// b = 0x005
// c = a + b = 0x002
// c' = a + b modulo g = 0xffd + 0x005 mod 0xffe = 0x004
// c - g = 0x002 - 0xffe = -0xffc = 0x004
c -= g;
}
uint256 r = ArithToUint256(c);
data.resize(32);
memcpy(data.data(), r.begin(), 32);
}
void Value::do_add() {
std::vector<std::vector<uint8_t>> args;
if (!extract_values(args) || args.size() < 2 || args.size() > 3) abort("invalid input (needs two values, with optional group as third)");
arith_uint256 a, b, g;
if (!get_arith_uint256(Value(args[0]), a)) return;
if (!get_arith_uint256(Value(args[1]), b)) return;
if (args.size() == 3 && !get_arith_uint256(Value(args[2]), g)) return;
add(data, a, b, g);
}
void Value::do_sub() {
std::vector<std::vector<uint8_t>> args;
if (!extract_values(args) || args.size() < 2 || args.size() > 3) abort("invalid input (needs two values, with optional group as third)");
arith_uint256 a, b, g;
if (!get_arith_uint256(Value(args[0]), a)) return;
if (!get_arith_uint256(Value(args[1]), b)) return;
if (args.size() == 3 && !get_arith_uint256(Value(args[2]), g)) return;
b = -b;
add(data, a, b, g);
}
void Value::do_boolify() {
std::vector<char> vc;
int64_t j;
switch (type) {
case T_INT:
return;
case T_DATA:
type = T_INT;
for (auto& v : data) if (v) { int64 = true; return; }
int64 = false;
return;
case T_STRING:
type = T_INT;
int64 = str.length() > 0;
return;
case T_OPCODE:
type = T_INT;
int64 = opcode == OP_TRUE;
return;
}
}
void Value::do_not_op() {
do_boolify();
int64 = !int64;
}
void Value::do_prefix_compact_size() {
data_value();
std::vector<uint8_t> prefix;
size_t data_len = data.size();
#define DLW(sz) \
for (size_t i = 0; i < sz; ++i) { prefix.push_back(data_len & 0xff); data_len >>= 8; } \
data.insert(data.begin(), prefix.begin(), prefix.end()); \
return
if (data_len < 253) { DLW(1); }
if (data_len <= std::numeric_limits<unsigned short>::max()) { prefix.push_back(253); DLW(2); }
if (data_len <= std::numeric_limits<unsigned int>::max()) { prefix.push_back(254); DLW(4); }
prefix.push_back(255); DLW(8);
}
void Value::do_len() {
data_value();
int64 = (int64_t)data.size();
type = T_INT;
}
std::vector<uint8_t> gen_taproot_tagged_hash(const std::string& tag, const std::vector<uint8_t>& msg) {
CHashWriter tagged_writer = TaggedHash(tag);
// we do not use the << operator is the std::vector serializer pushes a compact-size prefix
tagged_writer.write((const char*)msg.data(), msg.size());
auto r = tagged_writer.GetSHA256();
return std::vector<uint8_t>(r.begin(), r.end());
}
void Value::do_tagged_hash() {
std::vector<std::vector<uint8_t>> args;
if (!extract_values(args) || args.size() < 2) abort("invalid input (need at least two values: tag, msg[, msg2, ...])");
std::vector<uint8_t> msg = args[1];
for (size_t i = 2; i < args.size(); ++i) msg.insert(msg.end(), args[i].begin(), args[i].end());
if (args.size() > 2) fprintf(stderr, "msg = %s\n", HexStr(msg).c_str());
data = gen_taproot_tagged_hash(std::string(args[0].begin(), args[0].end()), msg);
}
void Value::do_taproot_tweak_pubkey() {
if (!secp256k1_context_sign) ECC_Start();
std::vector<std::vector<uint8_t>> args;
if (!extract_values(args) || args.size() != 2) abort("invalid input (needs two values: pubkey, tweak)");
if (args[0].size() != 32) abort("invalid input: first argument must be an x-only 32 byte pubkey");
if (args[1].size() != 32) abort("invalid input: second argument must be a 32 byte tweak");
secp256k1_xonly_pubkey pubkey;
if (!secp256k1_xonly_pubkey_parse(secp256k1_context_sign, &pubkey, args[0].data())) {
abort("invalid input: pubkey invalid (parse failed)");
}
int is_negated;
secp256k1_pubkey output_pubkey;
if (!secp256k1_xonly_pubkey_tweak_add(secp256k1_context_sign, &output_pubkey, &pubkey, args[1].data())) {
abort("failure: secp256k1_xonly_pubkey_tweak_add call failed");
}
data.resize(33);
size_t output_len = 33;
if (!secp256k1_ec_pubkey_serialize(secp256k1_context_sign, data.data(), &output_len, &output_pubkey, SECP256K1_EC_COMPRESSED)) {
abort("failed to serialize pubkey");
}
assert(output_len == 33);
// implementation note: this returns a regular (not x-only) pubkey, from tweaking a x-only pubkey
}
void Value::do_pubkey_to_xpubkey() {
CPubKey pubkey(data);
if (!pubkey.IsValid()) abort("invalid pubkey");
secp256k1_pubkey pk;
if (!secp256k1_ec_pubkey_parse(secp256k1_context_sign, &pk, &pubkey[0], pubkey.size())) {
abort("failed to parse pubkey");
}
secp256k1_xonly_pubkey xpubkey;
int pk_parity;
if (!secp256k1_xonly_pubkey_from_pubkey(secp256k1_context_sign, &xpubkey, &pk_parity, &pk)) {
abort("failed to convert regular pubkey into x-only pubkey");
}
btc_logf("(pk_parity = %d)\n", pk_parity);
data.resize(32);
if (!secp256k1_xonly_pubkey_serialize(secp256k1_context_sign, data.data(), &xpubkey)) {
abort("failed to serialize x-only pubkey");
}
}
void Value::do_jacobi_symbol() {
if (type != T_DATA) abort("invalid type (must be data)");
arith_uint256 n, k, t(0);
std::vector<std::vector<uint8_t>> args;
if (!extract_values(args)) {
// user omitting k value; use secp256k1 field
if (data.size() != 32) abort("n must be 32 bytes (not %zu)", data.size());
n = UintToArith256(uint256(data));
k = UintToArith256(SECP256K1_FIELD_SIZE);
} else if (args.size() != 2) {
abort("invalid input (needs n and optional k)");
} else {
if (args[0].size() != 32) abort("n must be 32 bytes (not %zu)", args[0].size());
if (args[1].size() != 32) abort("k must be 32 bytes (not %zu)", args[1].size());
n = UintToArith256(uint256(args[0]));
k = UintToArith256(uint256(args[1]));
}
n = n % k;
while (n.bits() > 0) {
while ((n & 1) == 0) {
n >>= 1;
uint64_t r = k.GetLow64() & 7;
t ^= (r == 3 || r == 5);
}
arith_uint256 tmp = n;
n = k;
k = tmp;
t ^= ((n & k & 3) == 3);
n = n % k;
}
int64 = k == 1 ? (t.bits() > 0) ? -1 : 1 : 0;
type = T_INT;
}
#ifdef ENABLE_DANGEROUS
void Value::do_taproot_tweak_seckey() {
if (!secp256k1_context_sign) ECC_Start();
// {
// auto& ctx = secp256k1_context_sign;
// // -in-
// auto privkey_vec = ParseHex("3bed2cb3a3acf7b6a8ef408420cc682d5520e26976d354254f528c965612054f");
// auto tweak_vec = ParseHex("0b0e6981ce6cac74d055d0e4c25e5b4455a083b3217761327867f26460e0a776");
// // -check-
// auto pubkey_vec = ParseHex("035bf08d58a430f8c222bffaf9127249c5cdff70a2d68b2b45637eb662b6b88eb5");
// auto xpubkey_vec = ParseHex("5bf08d58a430f8c222bffaf9127249c5cdff70a2d68b2b45637eb662b6b88eb5");
// secp256k1_keypair keypair;
// secp256k1_pubkey pubkey, pubkey2;
// secp256k1_xonly_pubkey xpubkey;
// std::vector<uint8_t> data, data2;
// int pk_parity;
// size_t len;
// // set up keypair
// assert(secp256k1_keypair_create(ctx, &keypair, privkey_vec.data()));
// // verify x-only pubkey
// assert(secp256k1_keypair_xonly_pub(ctx, &xpubkey, &pk_parity, &keypair));
// assert(pk_parity == 1);
// data.resize(32);
// assert(secp256k1_xonly_pubkey_serialize(ctx, data.data(), &xpubkey));
// assert(data == xpubkey_vec);
// // verify regular pubkey
// assert(secp256k1_keypair_pub(ctx, &pubkey, &keypair));
// data.resize(33);
// len = 33;
// assert(secp256k1_ec_pubkey_serialize(ctx, data.data(), &len, &pubkey, SECP256K1_EC_COMPRESSED));
// assert(data == pubkey_vec);
// printf("pre-tweak pubkey = %s\n", HexStr(data).c_str());
// // apply tweak to pubkey
// assert(secp256k1_xonly_pubkey_tweak_add(ctx, &pubkey, &xpubkey, tweak_vec.data()));
// // apply the same tweak to the keypair
// assert(secp256k1_keypair_xonly_tweak_add(ctx, &keypair, tweak_vec.data()));
// // 'pubkey' (result of xonly_pubkey_tweak_add) and the pubkey from the keypair should be the same
// assert(secp256k1_keypair_pub(ctx, &pubkey2, &keypair));
// // serialize into data(2)
// assert(secp256k1_ec_pubkey_serialize(ctx, data.data(), &len, &pubkey, SECP256K1_EC_COMPRESSED));
// data2.resize(33);
// assert(len == 33); // should always be 33
// assert(secp256k1_ec_pubkey_serialize(ctx, data2.data(), &len, &pubkey2, SECP256K1_EC_COMPRESSED));
// assert(len == 33); // should always be 33
// printf("post-tweak pubkey:\n%s\n%s\n", HexStr(data).c_str(), HexStr(data2).c_str());
// assert(data == data2);
// printf("all is swell\n");
// }
std::vector<std::vector<uint8_t>> args;
if (!extract_values(args) || args.size() != 2) abort("invalid input (needs two values: privkey, tweak)");
if (args[0].size() != 32) abort("invalid input: first argument must be a 32 byte private key");
if (args[1].size() != 32) abort("invalid input: second argument must be a 32 byte tweak");
secp256k1_keypair keypair;
if (!secp256k1_keypair_create(secp256k1_context_sign, &keypair, args[0].data())) {
abort("failure: unable to create keypair from given private key");
}
// secp256k1_pubkey pubkey;
// size_t len = 33;
// auto& ctx = secp256k1_context_sign;
// assert(secp256k1_keypair_pub(ctx, &pubkey, &keypair));
// data.resize(33);
// len = 33;
// assert(secp256k1_ec_pubkey_serialize(ctx, data.data(), &len, &pubkey, SECP256K1_EC_COMPRESSED));
// printf("pre-tweak pubkey = %s\n", HexStr(data).c_str());
if (!secp256k1_keypair_xonly_tweak_add(secp256k1_context_sign, &keypair, args[1].data())) {
abort("failure: secp256k1_keypair_xonly_tweak_add call failed");
}
// {
// assert(secp256k1_keypair_pub(secp256k1_context_sign, &pubkey, &keypair));
// std::vector<uint8_t> v;
// v.resize(33);
// assert(secp256k1_ec_pubkey_serialize(secp256k1_context_sign, v.data(), &len, &pubkey, SECP256K1_EC_COMPRESSED));
// printf("resulting pubkey = %s\n", HexStr(v).c_str());
// }
data.resize(32);
// there is no public API to retrieve a private key from a keypair, so this code may break at any
// point in time without notice
memcpy(data.data(), keypair.data, 32);
{
// verify privkey
auto r = Value(data);
r.do_get_pubkey();
secp256k1_pubkey pk;
assert(secp256k1_keypair_pub(secp256k1_context_sign, &pk, &keypair));
std::vector<uint8_t> ser;
ser.resize(33);
size_t len = 33;
assert(secp256k1_ec_pubkey_serialize(secp256k1_context_sign, ser.data(), &len, &pk, SECP256K1_EC_COMPRESSED));
if (r.data != ser) {
fprintf(stderr, "fatal: private key derivation failure (resulting pubkeys mismatch: %s vs %s)\n", HexStr(r.data).c_str(), HexStr(ser).c_str());
}
assert(r.data == ser);
fprintf(stderr, "(pubkey verified: %s)\n", HexStr(ser).c_str());
}
}
void Value::do_combine_privkeys() {
if (!secp256k1_context_sign) ECC_Start();
if (type != T_DATA) abort("invalid type (must be data)");
std::vector<std::vector<uint8_t>> args;
if (!extract_values(args) || args.size() != 2) abort("invalid input (needs two privkeys)");
for (int i = 0; i < 2; i++) {
if (args[i].size() != 32) {
// it is probably a WIF encoded key
Value wif(args[i]);
wif.str_value();
if (wif.str.length() != args[i].size()) abort("invalid input (private key %d must be 32 byte data or a WIF encoded privkey)", i);
wif.do_decode_wif();
args[i] = wif.data;
}
}
if (!secp256k1_ec_privkey_tweak_add(secp256k1_context_sign, args[0].data(), args[1].data())) {
abort("failed call to secp256k1_ec_privkey_tweak_add");
}
data = args[0];
}
void Value::do_multiply_privkeys() {
if (!secp256k1_context_sign) ECC_Start();
if (type != T_DATA) abort("invalid type (must be data)");
std::vector<std::vector<uint8_t>> args;
if (!extract_values(args) || args.size() != 2) abort("invalid input (needs two privkeys)");
for (int i = 0; i < 2; i++) {
if (args[i].size() != 32) {
// it is probably a WIF encoded key
Value wif(args[i]);
wif.str_value();
if (wif.str.length() != args[i].size()) abort("invalid input (private key %d must be 32 byte data or a WIF encoded privkey)", i);
wif.do_decode_wif();
args[i] = wif.data;
}
}
if (!secp256k1_ec_privkey_tweak_mul(secp256k1_context_sign, args[0].data(), args[1].data())) {
abort("failed call to secp256k1_ec_privkey_tweak_add");
}
data = args[0];
}
void Value::do_negate_privkey() {
if (!secp256k1_context_sign) ECC_Start();
if (type != T_DATA) abort("invalid type (must be data)");
if (!secp256k1_ec_privkey_negate(secp256k1_context_sign, &data[0])) {
abort("failed to negate privkey");
}
}
void Value::do_get_pubkey() {
if (!secp256k1_context_sign) ECC_Start();
// the value is a private key or a WIF encoded key
if (type == T_STRING) {
do_decode_wif();
}
secp256k1_pubkey pubkey;
size_t clen = CPubKey::SIZE;
CPubKey result;
int ret = secp256k1_ec_pubkey_create(secp256k1_context_sign, &pubkey, data.data());
assert(ret);
secp256k1_ec_pubkey_serialize(secp256k1_context_sign, (unsigned char*)result.begin(), &clen, &pubkey, SECP256K1_EC_COMPRESSED);
assert(result.size() == clen);
assert(result.IsValid());
data = std::vector<uint8_t>(result.begin(), result.end());
}
void Value::do_get_xpubkey() {
// the secp256k1_xonly_pubkey_create function was removed, so we do this in two steps; first we convert to a pubkey,
// and then convert that pubkey into an xpubkey
do_get_pubkey();
do_pubkey_to_xpubkey();
}
void Value::sign(bool compact) {
if (!secp256k1_context_sign) ECC_Start();
// the value is a script-style push of the sighash followed by the private key
if (type != T_DATA) abort("invalid type (must be data)");
std::vector<std::vector<uint8_t>> args;
if (!extract_values(args) || args.size() != 2) abort("invalid input (needs a sighash and a private key)");
auto& sighash_arg = args[0];
auto& privkey_arg = args[1];
if (privkey_arg.size() != 32) {
// it is probably a WIF encoded key
Value wif(privkey_arg);
wif.str_value();
if (wif.str.length() != privkey_arg.size()) abort("invalid input (private key must be 32 byte data or a WIF encoded privkey)");
wif.do_decode_wif();
privkey_arg = wif.data;
}
if (privkey_arg.size() != 32) abort("invalid input (private key must be 32 bytes)");
if (sighash_arg.size() != 32) abort("invalid input (sighash must be 32 bytes)");
const uint256 sighash(sighash_arg);
std::vector<uint8_t> sigdata;
size_t siglen = compact ? 64 : CPubKey::SIGNATURE_SIZE;
sigdata.resize(siglen);
uint8_t extra_entropy[32] = {0};
secp256k1_ecdsa_signature sig;
int ret = secp256k1_ecdsa_sign(secp256k1_context_sign, &sig, sighash.begin(), privkey_arg.data(), secp256k1_nonce_function_rfc6979, nullptr);
assert(ret);
if (compact) {
secp256k1_ecdsa_signature_serialize_compact(secp256k1_context_sign, (unsigned char*)sigdata.data(), &sig);
} else {
secp256k1_ecdsa_signature_serialize_der(secp256k1_context_sign, (unsigned char*)sigdata.data(), &siglen, &sig);
}
sigdata.resize(siglen);
data = sigdata;
}
void Value::sign_schnorr() {
if (!secp256k1_context_sign) ECC_Start();
// the value is a script-style push of the sighash followed by the private key
if (type != T_DATA) abort("invalid type (must be data)");
std::vector<std::vector<uint8_t>> args;
if (!extract_values(args) || args.size() != 2) abort("invalid input (needs a sighash and a private key)");
auto& sighash_arg = args[0];
auto& privkey_arg = args[1];
if (privkey_arg.size() != 32) {
// it is probably a WIF encoded key
Value wif(privkey_arg);
wif.str_value();
if (wif.str.length() != privkey_arg.size()) abort("invalid input (private key must be 32 byte data or a WIF encoded privkey)");
wif.do_decode_wif();
privkey_arg = wif.data;
}
if (privkey_arg.size() != 32) abort("invalid input (private key must be 32 bytes)");
if (sighash_arg.size() != 32) abort("invalid input (sighash must be 32 bytes)");
const uint256 sighash(sighash_arg);
data.resize(64);
secp256k1_keypair keypair; // a private key and its public key equivalent
if (!secp256k1_keypair_create(secp256k1_context_sign, &keypair, privkey_arg.data())) {
abort("failed to create keypair for given secret key");
}
int pk_parity;
secp256k1_xonly_pubkey xpubkey;
if (!secp256k1_keypair_xonly_pub(secp256k1_context_sign, &xpubkey, &pk_parity, &keypair)) {
abort("failed to derive pubkey from keypair (what?)");
}
if (!secp256k1_schnorrsig_sign(secp256k1_context_sign, data.data(), sighash.begin(), &keypair, NULL, NULL)) {
abort("failed to create signature");
}
if (!secp256k1_schnorrsig_verify(secp256k1_context_sign, data.data(), sighash.begin(), &xpubkey)) {
abort("failed to veriy signature");
}
}
#endif // ENABLE_DANGEROUS
void GetRandBytes(unsigned char* buf, int num)
{
// TODO: Make this more cross platform
FILE* f = fopen("/dev/urandom", "rb");
if (!f) {
fprintf(stderr, "unable to open /dev/urandom for GetRandBytes(): sorry! btcdeb does not currently work on your operating system for signature signing\n");
exit(1);
}
if (fread(buf, 1, num, f) != num) {
fprintf(stderr, "unable to read from /dev/urandom\n");
exit(1);
}
fclose(f);
}
void ECC_Start() {
assert(secp256k1_context_sign == nullptr);
secp256k1_context *ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
assert(ctx != nullptr);
{
// Pass in a random blinding seed to the secp256k1 context.
std::vector<unsigned char> vseed(32); // , secure_allocator<unsigned char>
GetRandBytes(vseed.data(), 32);
bool ret = secp256k1_context_randomize(ctx, vseed.data());
assert(ret);
}
secp256k1_context_sign = ctx;
}
void ECC_Stop() {
secp256k1_context *ctx = secp256k1_context_sign;
secp256k1_context_sign = nullptr;
if (ctx) {
secp256k1_context_destroy(ctx);
}
}
void DeserializeBool(const char* bv, std::vector<uint8_t>& output) {
// big endian, abbreviated downwards, i.e.
// 0b11 -> 0b00000011 = 3, as opposed to
// 0b11 -> 0b11000000 = 192
size_t len = strlen(bv);
size_t padding = (8 - (len % 8)) % 8;
size_t shifts = 0;
uint8_t r = 0;
for (size_t i = 0; i < len; ++i) {
bool bit;
if (padding) {
bit = false;
--i;
--padding;
} else if (bv[i] == '0') bit = false;
else if (bv[i] == '1') bit = true;
else throw std::runtime_error(strprintf("the character '%c' is not allowed in boolean expressions", bv[i]));
r = (r << 1) | bit;
shifts++;
if (shifts > 7) {
shifts = 0;
output.push_back(r);
r = 0;
}
}
}