-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
222 lines (187 loc) · 5.78 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
#include <iostream>
// BoruvkaExample.cpp : Definiert den Einstiegspunkt für die Konsolenanwendung.
//
// Boruvka's algorithm to find Minimum Spanning
// Tree of a given connected, undirected and
// weighted graph
#include <stdio.h>
#include <tchar.h>
// a structure to represent a weighted edge in graph
struct Edge
{
int src, dest, weight;
};
// a structure to represent a connected, undirected
// and weighted graph as a collection of edges.
struct Graph
{
// V-> Number of vertices, E-> Number of edges
int V, E;
// graph is represented as an array of edges.
// Since the graph is undirected, the edge
// from src to dest is also edge from dest
// to src. Both are counted as 1 edge here.
Edge* edge;
};
// A structure to represent a subset for union-find
struct subset
{
int parent;
int rank;
};
// Function prototypes for union-find (These functions are defined
// after boruvkaMST() )
int find(struct subset subsets[], int i);
void Union(struct subset subsets[], int x, int y);
// The main function for MST using Boruvka's algorithm
void boruvkaMST(struct Graph* graph)
{
// Get data of given graph
int V = graph->V, E = graph->E;
Edge *edge = graph->edge;
// Allocate memory for creating V subsets.
struct subset *subsets = new subset[V];
// An array to store index of the cheapest edge of
// subset. The stored index for indexing array 'edge[]'
int *cheapest = new int[V];
// Create V subsets with single elements
for (int v = 0; v < V; ++v)
{
subsets[v].parent = v;
subsets[v].rank = 0;
cheapest[v] = -1;
}
// Initially there are V different trees.
// Finally there will be one tree that will be MST
int numTrees = V;
int MSTweight = 0;
// Keep combining components (or sets) until all
// compnentes are not combined into single MST.
while (numTrees > 1)
{
// Traverse through all edges and update
// cheapest of every component
for (int i = 0; i<E; i++)
{
// Find components (or sets) of two corners
// of current edge
int set1 = find(subsets, edge[i].src);
int set2 = find(subsets, edge[i].dest);
// If two corners of current edge belong to
// same set, ignore current edge
if (set1 == set2)
continue;
// Else check if current edge is closer to previous
// cheapest edges of set1 and set2
else
{
if (cheapest[set1] == -1 ||
edge[cheapest[set1]].weight > edge[i].weight)
cheapest[set1] = i;
if (cheapest[set1] == -1 ||
edge[cheapest[set2]].weight > edge[i].weight)
cheapest[set2] = i;
}
}
// Consider the above picked cheapest edges and add them
// to MST
for (int i = 0; i<V; i++)
{
// Check if cheapest for current set exists
if (cheapest[i] != -1)
{
int set1 = find(subsets, edge[cheapest[i]].src);
int set2 = find(subsets, edge[cheapest[i]].dest);
if (set1 == set2)
continue;
MSTweight += edge[cheapest[i]].weight;
printf("Edge %d-%d included in MST\n",
edge[cheapest[i]].src, edge[cheapest[i]].dest,
edge[cheapest[i]].weight);
// Do a union of set1 and set2 and decrease number
// of trees
Union(subsets, set1, set2);
numTrees--;
}
}
}
printf("Weight of MST is %d\n", MSTweight);
return;
}
// Creates a graph with V vertices and E edges
struct Graph* createGraph(int V, int E)
{
Graph* graph = new Graph;
graph->V = V;
graph->E = E;
graph->edge = new Edge[E];
return graph;
}
// A utility function to find set of an element i
// (uses path compression technique)
int find(struct subset subsets[], int i)
{
// find root and make root as parent of i
// (path compression)
if (subsets[i].parent != i)
subsets[i].parent =
find(subsets, subsets[i].parent);
return subsets[i].parent;
}
// A function that does union of two sets of x and y
// (uses union by rank)
void Union(struct subset subsets[], int x, int y)
{
int xroot = find(subsets, x);
int yroot = find(subsets, y);
// Attach smaller rank tree under root of high
// rank tree (Union by Rank)
if (subsets[xroot].rank < subsets[yroot].rank)
subsets[xroot].parent = yroot;
else if (subsets[xroot].rank > subsets[yroot].rank)
subsets[yroot].parent = xroot;
// If ranks are same, then make one as root and
// increment its rank by one
else
{
subsets[yroot].parent = xroot;
subsets[xroot].rank++;
}
}
// Driver program to test above functions
int main()
{
/* Let us create following weighted graph
10
0--------1
| \ |
6| 5\ |15
| \ |
2--------3
4 */
int V = 4; // Number of vertices in graph
int E = 5; // Number of edges in graph
struct Graph* graph = createGraph(V, E);
// add edge 0-1
graph->edge[0].src = 0;
graph->edge[0].dest = 1;
graph->edge[0].weight = 10;
// add edge 0-2
graph->edge[1].src = 0;
graph->edge[1].dest = 2;
graph->edge[1].weight = 6;
// add edge 0-3
graph->edge[2].src = 0;
graph->edge[2].dest = 3;
graph->edge[2].weight = 5;
// add edge 1-3
graph->edge[3].src = 1;
graph->edge[3].dest = 3;
graph->edge[3].weight = 15;
// add edge 2-3
graph->edge[4].src = 2;
graph->edge[4].dest = 3;
graph->edge[4].weight = 4;
boruvkaMST(graph);
return 0;
}