-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_generated.py
198 lines (166 loc) · 8.4 KB
/
test_generated.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import argparse
import os
import numpy as np
import pandas as pd
import torch.nn.functional as F
import torchvision.models as models
import torch.utils.data.distributed
import torch.utils.data
import torch.optim
import torch.backends.cudnn as cudnn
import torch.nn.parallel
import torch.nn as nn
import torch
from utils import AverageMeter, compute_accuracy, euclidean_dist, mkdir
from torch.utils.data import DataLoader
from samplers.episodic_batch_sampler import EpisodicBatchSampler
from dataloaders.spec_loader import Spec
from dataloaders.gen_spec_loader import GenSpec
from models.final_convnet import ConvNet
from models.identity import Identity
# dtype = torch.cuda.float if torch.cuda.is_available() else torch.float
# torch.zeros(2, 2, dtype=dtype)
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
model_names.append('default_convnet')
parser = argparse.ArgumentParser(description='Pytorch Prototypical Networks Testing')
parser.add_argument('--train_dir', type=str, help='path to training data (default: none)')
parser.add_argument('--test_dir', type=str, metavar='train_dir', help='path to validation data')
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet18',
choices=model_names,
help='model architecture: ' + ' | '.join(model_names) + ' (default: resnet18)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--batch_size', default=64, type=int, help='Batch size')
parser.add_argument('--evaluation_name', type=str, help='Evaluation name')
parser.add_argument('--gpu', default=None, type=int, help='GPU id to use.')
parser.add_argument('--cpu', default=False, action='store_true', help='CPU mode')
parser.add_argument('--checkpoint', type=str, help='model checkpoint path')
parser.add_argument('--results_name', type=str, help='name of the results csv')
parser.add_argument('--n_episodes', default=None, type=int, help='Number of episodes to average')
parser.add_argument('--n_way', default=None, type=int, help='Number of classes per episode')
parser.add_argument('--n_support', default=None, type=int, help='Number of support samples per class')
parser.add_argument('--n_query', default=None, type=int, help='Number of query samples')
parser.add_argument('--test_gen', default=None, type=str, help='name of cv file for test data generated')
parser.add_argument('--support_ori', default=None, type=str, help='name of csv file for support set original data')
# CHANGE HERE FOR STORED EMBEDDINGS
PATH_EMBEDDINGS = 'embeddings/'
def main():
args = parser.parse_args()
global results_path
results_path = os.path.join('evaluations', args.evaluation_name)
mkdir(results_path)
options = vars(args)
save_options_dir = os.path.join(results_path, 'options.txt')
with open(save_options_dir, 'wt') as opt_file:
opt_file.write('------------ Options -------------\n')
for k, v in sorted(options.items()):
opt_file.write('%s: %s\n' % (str(k), str(v)))
opt_file.write('-------------- End ----------------\n')
# Create model
print("=> creating model '{}'".format(args.arch))
if args.arch == 'default_convnet':
model = ConvNet()
else:
model = models.__dict__[args.arch]()
if args.out_dim is not None:
lin = nn.Linear(model.fc.in_features, args.out_dim)
model.fc = lin
else:
model.fc = Identity()
# Load checkpoint
if os.path.isfile(args.checkpoint):
print("=> loading checkpoint '{}'".format(args.checkpoint))
checkpoint = torch.load(args.checkpoint)
model.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}' )".format(args.checkpoint))
else:
print("=> no checkpoint found at '{}'".format(args.checkpoint))
if not args.cpu:
torch.cuda.set_device(args.gpu)
model = model.cuda(args.gpu)
model.eval()
cudnn.benchmark = True
# Testing data
test_dataset = GenSpec(args.test_gen)
val_dataset = Spec(args.support_ori)
episodes_n_per_len = len(test_dataset)
episodes_n_per_len = args.n_episodes
print(f'episodes: {episodes_n_per_len}')
test_sampler = EpisodicBatchSampler(test_dataset.labels, episodes_n_per_len, args.n_way, args.n_support + args.n_query)
test_loader = DataLoader(dataset=test_dataset, batch_sampler=test_sampler,
num_workers=args.workers, pin_memory=True)
val_sampler = EpisodicBatchSampler(val_dataset.labels, args.n_episodes, args.n_way, args.n_support + args.n_query)
val_loader = DataLoader(dataset=val_dataset, batch_sampler=val_sampler,
num_workers=args.workers, pin_memory=True)
test(test_loader, val_loader, model, args,episodes_n_per_len)
def test(test_loader, val_loader, model, args,episodes_n_per_len):
print('Testing...')
losses = AverageMeter()
accuracy = AverageMeter()
predictions = np.array([])
labels_list = np.array([])
# Switch to evaluate mode
model.eval()
with torch.no_grad():
emb_pla,emb_col,emb_joi,emb_tri = [],[],[],[]
for n_episode, batch in enumerate(zip(test_loader, val_loader)):
print(f"episode_n {n_episode+1}")
data, _ = [_ for _ in batch[0]]
val_data, _ = [_ for _ in batch[1]]
p = args.n_support * args.n_way
data_support = val_data[:p]
data_query = data[p:]
# Compute class prototypes (n_way, output_dim)
embedding_vectors = model(data_support).reshape(args.n_support, args.n_way, -1)
class_prototypes = embedding_vectors.mean(dim=0)
# embedding_vectors_array = (embedding_vectors.data).cpu().numpy()
class_embed = {0 : emb_pla,1 : emb_col,2 : emb_joi,3 : emb_tri}
for i in range(0,args.n_way):
out = embedding_vectors[:, i, :]
class_embed[i].append(out)
labels = torch.arange(args.n_way).repeat(args.n_query)
labels = labels.type(torch.LongTensor)
# Compute loss and metrics
logits = euclidean_dist(model(data_query), class_prototypes)
loss = F.cross_entropy(logits, labels)
acc = compute_accuracy(logits, labels)
acc, f1 = compute_accuracy(logits, labels)
# Record loss and accuracy
losses.update(loss.item(), data_query.size(0))
accuracy.update(f1, data_query.size(0))
pred = torch.argmax(logits, dim=1)
pred = (pred.data).cpu().numpy()
true = (labels.data).cpu().numpy()
predictions = np.append(predictions, pred)
labels_list = np.append(labels_list, true)
# SAVE PREDICTIONS
data = {'true': labels_list,
'predictions': predictions}
pred_paths = os.path.join('predictions', args.evaluation_name)
if not os.path.isdir(pred_paths):
os.mkdir(pred_paths)
df = pd.DataFrame(data, columns=['true', 'predictions'])
df.to_csv(f'{pred_paths}/{args.test_gen[:-4]}_test_aug_eps{episodes_n_per_len}_{accuracy.avg:.3f}.csv', index=False)
print('Test Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Test Accuracy {accuracy.val:.3f}, f1 avg: {accuracy.avg:.3f}\t'.format(loss=losses, accuracy=accuracy))
# SAVE EMBEDDINGS
emb_paths = os.path.join(PATH_EMBEDDINGS, args.evaluation_name)
if not os.path.isdir(emb_paths):
os.mkdir(emb_paths)
with open(f'{emb_paths}/{args.test_gen[:-4]}_testaug_pla_emb_eps{episodes_n_per_len}_{accuracy.avg:.3f}.txt', 'wb') as f:
for a in emb_pla:
np.savetxt(f, a)
with open(f'{emb_paths}/{args.test_gen[:-4]}_testaug_col_emb_eps{episodes_n_per_len}_{accuracy.avg:.3f}.txt', 'wb') as f:
for a in emb_col:
np.savetxt(f, a)
with open(f'{emb_paths}/{args.test_gen[:-4]}_testaug_tri_emb_eps{episodes_n_per_len}_{accuracy.avg:.3f}.txt', 'wb') as f:
for a in emb_tri:
np.savetxt(f, a)
with open(f'{emb_paths}/{args.test_gen[:-4]}_testaug_joi_emb_eps{episodes_n_per_len}_{accuracy.avg:.3f}.txt', 'wb') as f:
for a in emb_joi:
np.savetxt(f, a)
return losses.avg, accuracy.avg
if __name__ == '__main__':
main()