-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
350 lines (285 loc) · 13 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
'''
Train a model to perform a RTM inversion
@author Selene Ledain
'''
import os
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from datetime import datetime
from argparse import ArgumentParser
import yaml
from typing import Dict, Tuple, Union, Any
import pickle
import torch
from models import MODELS
def load_config(config_path: str) -> Dict:
'''
Load configuration file
:param config_path: path to yaml file
:returns: dictionary of parameters
'''
with open(config_path, "r") as config_file:
config = yaml.safe_load(config_file)
return config
def prepare_data_old(config: dict) -> Union[Tuple[np.array, np.array, np.array, np.array], None]:
'''
Load data and prepare training and testing sets
:param config: dictionary of configuration parameters
:returns: X pd.DataFrame and y pd.Series for training and test sets
'''
data_path = config['Data']['data_path']
if isinstance(data_path, str):
df = pd.read_pickle(data_path)
X = df[config['Data']['train_cols']]
y = df[config['Data']['target_col']]
X_train, X_test, y_train, y_test = train_test_split(X, y.values, test_size=config['Data']['test_size'], random_state=config['Seed'])
X_soil = pd.DataFrame()
y_soil = pd.Series()
if 'baresoil_samples' in config['Data'].keys():
baresoil_dfs = [pd.read_pickle(path) for path in config['Data']['baresoil_samples']]
concatenated_df = pd.concat(baresoil_dfs, axis=0, ignore_index=True)
X_soil = concatenated_df[config['Data']['train_cols']]
y_soil = pd.Series([0]*len(X_soil))
X_train = pd.concat([X_train , X_soil], ignore_index=True)
y_train = pd.concat([y_train , y_soil], ignore_index=True)
if config['Model']['name'] == 'RF':
# Add derivatives
derivatives = X_train.diff(axis=1)
for col in X_train.columns[1:]:
X_train[col + '_derivative'] = derivatives[col]
derivatives = X_test.diff(axis=1)
for col in X_test.columns[1:]:
X_test[col + '_derivative'] = derivatives[col]
# Add NDVI
X_train['ndvi'] = (X_train['B08'] - X_train['B04'])/(X_train['B08'] + X_train['B04'])
X_test['ndvi'] = (X_test['B08'] - X_test['B04'])/(X_test['B08'] + X_test['B04'])
if config['Data']['normalize']:
scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train) # becomes an array
X_test = scaler.transform(X_test)
# Save for model inference
scaler_path = config['Model']['save_path'].split('.')[0] + '_scaler.pkl' \
if 'save_path' in config['Model'].keys() \
else config['Model']['name'] + '_' + datetime.now().strftime("%Y%m%d_%H%M%S") + '_scaler.pkl'
os.makedirs(os.path.dirname(scaler_path), exist_ok=True)
with open(scaler_path, 'wb') as f:
pickle.dump(scaler, f)
return X_train, X_test, y_train, y_test
else:
return X_train.values, X_test.values, y_train, y_test
elif isinstance(data_path, list):
# Assuming all files in the list are pickled DataFrames
dfs = [pd.read_pickle(path) for path in data_path]
concatenated_df = pd.concat(dfs, axis=0, ignore_index=True)
# Sample data
#concatenated_df = concatenated_df.sample(100, random_state=config['Seed'])
X = concatenated_df[config['Data']['train_cols']] #sampled_df[config['Data']['train_cols']] #
y = concatenated_df[config['Data']['target_col']] #sampled_df[config['Data']['target_col']] #
X_train, X_test, y_train, y_test = train_test_split(X, y.values, test_size=config['Data']['test_size'], random_state=config['Seed'])
X_soil = pd.DataFrame()
y_soil = pd.Series()
if 'baresoil_samples' in config['Data'].keys():
baresoil_dfs = [pd.read_pickle(path) for path in config['Data']['baresoil_samples']]
concatenated_df = pd.concat(baresoil_dfs, axis=0, ignore_index=True)
X_soil = concatenated_df[config['Data']['train_cols']]
y_soil = pd.Series([0]*len(X_soil))
X_train = pd.concat([X_train , X_soil], ignore_index=True)
y_train = pd.concat([pd.Series(y_train), y_soil], ignore_index=True)
if config['Model']['name'] == 'RF':
# Add derivatives
derivatives = X_train.diff(axis=1)
for col in X_train.columns[1:]:
X_train[col + '_derivative'] = derivatives[col]
derivatives = X_test.diff(axis=1)
for col in X_test.columns[1:]:
X_test[col + '_derivative'] = derivatives[col]
# Add NDVI
X_train['ndvi'] = (X_train['B08'] - X_train['B04'])/(X_train['B08'] + X_train['B04'])
X_test['ndvi'] = (X_test['B08'] - X_test['B04'])/(X_test['B08'] + X_test['B04'])
#print(len(X_train), len(X_test))
if config['Data']['normalize']:
scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train) # becomes an array
X_test = scaler.transform(X_test)
# Save for model inference
scaler_path = config['Model']['save_path'].split('.')[0] + '_scaler.pkl' \
if 'save_path' in config['Model'].keys() \
else config['Model']['name'] + '_' + datetime.now().strftime("%Y%m%d_%H%M%S") + '_scaler.pkl'
os.makedirs(os.path.dirname(scaler_path), exist_ok=True)
with open(scaler_path, 'wb') as f:
pickle.dump(scaler, f)
return X_train, X_test, y_train.values, y_test
else:
return X_train.values, X_test.values, y_train, y_test
else:
return None
def prepare_data(config: dict) -> Union[Tuple[np.array, np.array, np.array, np.array], None]:
'''
Load data and prepare training and testing sets
:param config: dictionary of configuration parameters
:returns: X pd.DataFrame and y pd.Series for training and test sets
'''
data_path = config['Data']['data_path']
test_data_path = config['Data']['test_data_path']
##### Load test data
if isinstance(test_data_path, str):
df = pd.read_pickle(test_data_path)
X_test = df[config['Data']['train_cols']]
y_test = df[config['Data']['target_col']]
elif isinstance(test_data_path, list):
# Assuming all files in the list are pickled DataFrames
dfs = [pd.read_pickle(path) for path in test_data_path]
concatenated_df = pd.concat(dfs, axis=0, ignore_index=True)
X_test = concatenated_df[config['Data']['train_cols']]
y_test = concatenated_df[config['Data']['target_col']]
##### Load train data, normalize train and test
if isinstance(data_path, str):
df = pd.read_pickle(data_path)
X_train = df[config['Data']['train_cols']]
y_train = df[config['Data']['target_col']]
X_soil = pd.DataFrame()
y_soil = pd.Series()
if 'baresoil_samples' in config['Data'].keys():
baresoil_dfs = [pd.read_pickle(path) for path in config['Data']['baresoil_samples']]
concatenated_df = pd.concat(baresoil_dfs, axis=0, ignore_index=True)
X_soil = concatenated_df[config['Data']['train_cols']]
y_soil = pd.Series([0]*len(X_soil))
X_train = pd.concat([X_train , X_soil], ignore_index=True)
y_train = pd.concat([y_train , y_soil], ignore_index=True)
if config['Data']['normalize']:
scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train) # becomes an array
X_test = scaler.transform(X_test)
# Save for model inference
scaler_path = config['Model']['save_path'].split('.')[0] + '_scaler.pkl' \
if 'save_path' in config['Model'].keys() \
else config['Model']['name'] + '_' + datetime.now().strftime("%Y%m%d_%H%M%S") + '_scaler.pkl'
os.makedirs(os.path.dirname(scaler_path), exist_ok=True)
with open(scaler_path, 'wb') as f:
pickle.dump(scaler, f)
return X_train, X_test, y_train.values, y_test.values
else:
return X_train.values, X_test.values, y_train, y_test
elif isinstance(data_path, list):
# Assuming all files in the list are pickled DataFrames
dfs = [pd.read_pickle(path) for path in data_path]
concatenated_df = pd.concat(dfs, axis=0, ignore_index=True)
#concatenated_df = concatenated_df.sample(10, random_state=config['Seed'])
X_train = concatenated_df[config['Data']['train_cols']]
y_train = concatenated_df[config['Data']['target_col']]
X_soil = pd.DataFrame()
y_soil = pd.Series()
if 'baresoil_samples' in config['Data'].keys():
baresoil_dfs = [pd.read_pickle(path) for path in config['Data']['baresoil_samples']]
concatenated_df = pd.concat(baresoil_dfs, axis=0, ignore_index=True)
X_soil = concatenated_df[config['Data']['train_cols']]
y_soil = pd.Series([0]*len(X_soil))
X_train = pd.concat([X_train , X_soil], ignore_index=True)
y_train = pd.concat([pd.Series(y_train), y_soil], ignore_index=True)
if config['Data']['normalize']:
scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train) # becomes an array
X_test = scaler.transform(X_test)
# Save for model inference
scaler_path = config['Model']['save_path'].split('.')[0] + '_scaler.pkl' \
if 'save_path' in config['Model'].keys() \
else config['Model']['name'] + '_' + datetime.now().strftime("%Y%m%d_%H%M%S") + '_scaler.pkl'
os.makedirs(os.path.dirname(scaler_path), exist_ok=True)
with open(scaler_path, 'wb') as f:
pickle.dump(scaler, f)
return X_train, X_test, y_train.values, y_test
else:
return X_train.values, X_test.values, y_train, y_test
else:
return None
def build_model(config: dict) -> Any:
'''
Instantiated model
:param config: dictionary of configuration parameters
:returns: model
'''
model_name = config['Model']['name']
if model_name not in MODELS:
raise ValueError(f"Invalid model type: {model_name}")
else:
#if model_name == 'NN':
#torch.manual_seed(config['Seed'])
# Model hypereparameters can be set in the config, else default values used
model_params = {key: value for key, value in config['Model'].items() if key != 'name'} # Pass only hyperparams
model_params['random_state'] = config['Seed']
model = MODELS[model_name](**model_params)
return model
def train_model(config: dict) -> None:
'''
Train model on training set, get scores on test set, save model
:param config: dictionary of configuration parameters
'''
model_basename = config['Model'].pop('save_path') if 'save_path' in config['Model'].keys() else model_name + '_' + datetime.now().strftime("%Y%m%d_%H%M%S") + '.pkl'
save_model = config['Model'].pop('save')
score_path = config['Model'].pop('score_path') if 'score_path' in config['Model'].keys() else None
gpu = config['Model'].pop('gpu')
if not isinstance(config['Seed'], list):
config['Seed'] = [config['Seed']]
for seed in config['Seed']:
print('Running with seed', seed)
torch.manual_seed(seed)
np.random.seed(seed)
config['Seed'] = seed
#############################################
# DATA
config['Model']['save_path'] = model_basename.split('.')[0] + f'{seed}.pkl'
X_train, X_test, y_train, y_test = prepare_data(config=config)
"""
X_train = X_train[y_train<7]
y_train = y_train[y_train<7]
X_test = X_test[y_test<7]
y_test = y_test[y_test<7]
"""
# Move data to CUDA if GPUs requested and available
device = torch.device('cuda' if gpu and torch.cuda.is_available() else 'cpu')
print(device)
if device == torch.device('cuda'):
X_train, X_test, y_train, y_test = (
torch.FloatTensor(X_train).to(device),
torch.FloatTensor(X_test).to(device),
torch.FloatTensor(y_train).view(-1, 1).to(device),
torch.FloatTensor(y_test).view(-1, 1).to(device),
)
#############################################
# MODEL
if gpu and torch.cuda.is_available():
print('Using GPUs')
model_name = config['Model']['name']
model_filename = config['Model'].pop('save_path') # path to save trained model
model = build_model(config=config)
if device == torch.device('cuda'):
model.to(device)
#print(f"Model on: {next(model.parameters()).device}")
#print(f"Data on: {X_test.device}")
#############################################
# TRAIN
if model_name == 'GPR': # Active learning
model.fit(X_train=X_train,y_train=y_train, X_test=X_test, y_test=y_test)
else:
model.fit(X=X_train, y=y_train, X_test=X_test, y_test=y_test)
#############################################
# TEST
y_pred = model.predict(X_test=X_test)
print('Final test', y_pred.min())
if not isinstance(y_test, pd.Series):
y_test = y_test.flatten()
if not np.isnan(y_pred.flatten()).any():
model.test_scores(y_test=y_test, y_pred=y_pred.flatten(), dataset=f'Test {seed}', score_path=score_path)
#############################################
# SAVE
if save_model:
model.save(model=model, model_filename=model_filename)
return
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument('setting', type = str, metavar='path/to/setting.yaml', help='yaml with all settings')
args = parser.parse_args()
config = load_config(args.setting)
train_model(config)