-
Notifications
You must be signed in to change notification settings - Fork 12
/
calc_pressure.F90
523 lines (400 loc) · 18.1 KB
/
calc_pressure.F90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
!===============================================================================
module calc_pressure
implicit none
public :: update_pressure, & ! Procedure(s)
init_pressure, &
calculate_thvm
private ! default scope
contains
!=============================================================================
subroutine update_pressure( thlm, rtm, rcm, rho_ds_zt, thv_ds_zt, &
p_in_Pa, exner, p_in_Pa_zm, exner_zm )
! Description:
! Updates pressure according to the hydrostatic approximation. Combining
! the moist equation of state and the hydrostatic approximation, the change
! of pressure with respect to height can be calculated based on theta_v,
! such that:
!
! dp/dz = - p * grav / ( Rd * theta_v * exner );
!
! where exner = ( p / p0 )^(Rd/Cp);
!
! and where p0 is a reference pressure of 100000 Pa.
!
! The integral equation is set up to integrate over p on the left-hand side
! and integrate over z on the right-hand side. The equation is:
!
! INT(p1:p2) p^(Rd/Cp-1) dp
! = - p0^(Rd/Cp) * ( grav / Rd ) * INT(z1:z2) (1/thvm) dz.
!
! The value of mean theta_v (thvm) is calculated at each thermodynamic grid
! level, and linear interpolation is used in the integral equation for all
! altitudes in-between successive thermodynamic levels, such that:
!
! thvm(z) = ( ( thvm2 - thvm1 ) / ( z2 - z1 ) ) * ( z - z1 ) + thvm1.
!
! The integrals are solved, and the results for pressure can be rewritten
! in terms of exner, such that:
!
! exner2 - exner1
! | - ( grav / Cp )
! | * ( ( z2 - z1 ) / ( thvm2 - thvm1 ) ) * ln( thvm2 / thvm1 );
! = | where thvm2 /= thvm1;
! |
! | - ( grav / Cp ) * ( z2 - z1 ) / thvm; where thvm2 = thvm1 (= thvm).
!
! The value of pressure (exner) can be calculated using the above equation
! at all vertical levels once the value of pressure is known at one level.
!
! The model fields are usually least variant over time at the top of the
! model, so the value of pressure is calculated at the uppermost
! thermodynamic level, and then the values of pressure (exner) can be
! calculated at all other vertical levels (both thermodynamic levels and
! momentum levels). The following equation is used to calculate pressure
! at the uppermost thermodynamic level:
!
! p = ( ( rho_dry * Rd / p0^(Rd/Cp) )
! * thm * ( 1 + (Rv/Rd) * rvm ) )^(1/(1-Rd/Cp));
!
! where rho_dry is the density of dry air, where rvm = rtm - rcm, and where:
!
! thm = thlm + ( Lv / ( Cp * exner|_old ) ) * rcm;
!
! and exner|_old is exner from the previous timestep.
! References:
!-----------------------------------------------------------------------
use grid_class, only: &
gr, & ! Variable Type(s)
zt2zm ! Procedure(s)
use constants_clubb, only: &
one, & ! 1
Rd, & ! Gas constant for dry air [J/(kg K)]
Lv, & ! Latent heat of vaporization [J/kg]
Cp, & ! Specific heat of dry air [J/(kg K)]
kappa, & ! Rd/Cp [-]
ep2, & ! Rv/Rd (Rv is gas constant for water vapor) [-]
p0, & ! Reference pressure of 100000 Pa [Pa]
grav ! Acceleration of gravity (9.81 m/s^2) [m/s^2]
use clubb_precision, only: &
core_rknd ! Variable(s)
implicit none
! Input Variables
real( kind = core_rknd ), dimension(gr%nz), intent(in) :: &
thlm, & ! Mean liquid water potential temperature [K]
rtm, & ! Mean total water mixing ratio [kg/kg]
rcm, & ! Mean cloud water mixing ratio [kg/kg]
rho_ds_zt, & ! Dry, state base-state density (thermo. levels) [kg/m^3]
thv_ds_zt ! Reference theta_v on thermodynamic levels [K]
! Input/Output Variables
real( kind = core_rknd ), dimension(gr%nz), intent(inout) :: &
p_in_Pa, & ! Pressure (thermodynamic levels) [Pa]
exner ! Exner function (thermodynamic levels) [-]
! Output Variables
real( kind = core_rknd ), dimension(gr%nz), intent(out) :: &
p_in_Pa_zm, & ! Pressure on momentum levels [Pa]
exner_zm ! Exner function on momentum levels [-]
! Local Variables
real( kind = core_rknd ), dimension(gr%nz) :: &
thvm, & ! Mean theta_v (thermodynamic levels) [K]
thvm_zm ! Mean theta_v interpolated to momentum grid levels [K]
real( kind = core_rknd ) :: &
thm_nz, & ! Theta at the uppermost thermodynamic grid level [K]
rvm_nz ! Water vapor mixing ratio; uppermost thermo. level [kg/kg]
real( kind = core_rknd ), parameter :: &
g_ov_Cp = grav / Cp, & ! g / Cp [K/m]
invrs_kappa = one / kappa ! 1 / kappa
! Flag to calculate pressure and exner on momentum levels. Otherwise,
! linear interpolation of exner will be used.
logical, parameter :: &
l_calc_p_exner_m_levs = .true.
integer :: k ! Vertical level index
! Calculate thvm on thermodynamic grid levels.
thvm = calculate_thvm( thlm, rtm, rcm, exner, thv_ds_zt )
! Interpolate thvm to momentum grid levels.
thvm_zm = zt2zm( thvm )
! Calculate mean theta (thm) at the uppermost thermodynamic vertical grid
! level.
thm_nz = thlm(gr%nz) + ( Lv / ( Cp * exner(gr%nz) ) ) * rcm(gr%nz)
! Calculate mean water vapor mixing ratio (rvm) at the uppermost
! thermodynamic vertical grid level.
rvm_nz = rtm(gr%nz) - rcm(gr%nz)
! Update pressure at the uppermost thermodynamic grid level.
p_in_Pa(gr%nz) &
= ( ( rho_ds_zt(gr%nz) * Rd / p0**kappa ) &
* thm_nz * ( one + ep2 * rvm_nz ) )**(one/(one-kappa))
! Calculate exner at the uppermost thermodynamic grid level.
exner(gr%nz) = ( p_in_Pa(gr%nz) / p0 )**kappa
! Calculate exner at the uppermost momentum grid level, which is located
! above the uppermost thermodynamic grid level.
! exner2
! = exner1
! | ( grav / Cp )
! | * ( ( z2 - z1 ) / ( thvm2 - thvm1 ) ) * ln( thvm2 / thvm1 );
! - | where thvm2 /= thvm1;
! |
! | ( grav / Cp ) * ( z2 - z1 ) / thvm; where thvm2 = thvm1 (= thvm).
if ( l_calc_p_exner_m_levs ) then
if ( abs( thvm(gr%nz) - thvm_zm(gr%nz) ) &
> epsilon( thvm ) * thvm(gr%nz) ) then
exner_zm(gr%nz) &
= exner(gr%nz) &
- g_ov_Cp * ( gr%zm(gr%nz) - gr%zt(gr%nz) ) &
/ ( thvm_zm(gr%nz) - thvm(gr%nz) ) &
* log( thvm_zm(gr%nz) / thvm(gr%nz) )
else ! thvm(k+1) = thvm_zm(k)
exner_zm(gr%nz) &
= exner(gr%nz) &
- g_ov_Cp * ( gr%zm(gr%nz) - gr%zt(gr%nz) ) / thvm_zm(gr%nz)
endif
else ! .not. l_calc_p_exner_m_levs
! Interpolate exner to momentum levels
exner_zm(gr%nz) = zt2zm( exner, gr%nz )
endif ! l_calc_p_exner_m_levs
! Calculate pressure on the uppermost momentum level.
p_in_Pa_zm(gr%nz) = p0 * exner_zm(gr%nz)**invrs_kappa
! Calculate exner at all other thermodynamic and momentum grid levels,
! which are all located below the uppermost thermodynamic grid level.
! exner1
! = exner2
! | ( grav / Cp )
! | * ( ( z2 - z1 ) / ( thvm2 - thvm1 ) ) * ln( thvm2 / thvm1 );
! + | where thvm2 /= thvm1;
! |
! | ( grav / Cp ) * ( z2 - z1 ) / thvm; where thvm2 = thvm1 (= thvm).
do k = gr%nz-1, 2, -1
! Calculate exner on thermodynamic levels.
if ( abs( thvm(k+1) - thvm(k) ) > epsilon( thvm ) * thvm(k+1) ) then
exner(k) &
= exner(k+1) &
+ g_ov_Cp * ( gr%zt(k+1) - gr%zt(k) ) / ( thvm(k+1) - thvm(k) ) &
* log( thvm(k+1) / thvm(k) )
else ! thvm(k+1) = thvm(k)
exner(k) = exner(k+1) + g_ov_Cp * ( gr%zt(k+1) - gr%zt(k) ) / thvm(k)
endif
if ( l_calc_p_exner_m_levs ) then
! Calculate exner on momentum levels.
if ( abs( thvm(k+1) - thvm_zm(k) ) &
> epsilon( thvm ) * thvm(k+1) ) then
exner_zm(k) &
= exner(k+1) &
+ g_ov_Cp * ( gr%zt(k+1) - gr%zm(k) ) &
/ ( thvm(k+1) - thvm_zm(k) ) &
* log( thvm(k+1) / thvm_zm(k) )
else ! thvm(k+1) = thvm_zm(k)
exner_zm(k) &
= exner(k+1) + g_ov_Cp * ( gr%zt(k+1) - gr%zm(k) ) / thvm_zm(k)
endif
else ! .not. l_calc_p_exner_m_levs
! Interpolate exner to momentum levels
exner_zm(k) = zt2zm( exner, k )
endif ! l_calc_p_exner_m_levs
enddo ! k = gr%nz-1, 2, -1
#ifdef MKL
! MKL VML functions available. vdpowx(n,a,b,y) computes a(1:n)^b = y(1:n)
! This temporarily store exner(_zm)**invrs_kappa in p_in_Pa(_zm), before
! multiplying p_in_Pa(_zm) by p0 to complete the calculation.
! Calculate pressure on thermodynamic levels
call vdpowx( gr%nz-2, exner(2:gr%nz-1), invrs_kappa, p_in_Pa(2:gr%nz-1) )
p_in_Pa(2:gr%nz-1) = p_in_Pa(2:gr%nz-1) * p0
! Calculate pressure on momentum levels.
call vdpowx( gr%nz-2, exner_zm(2:gr%nz-1), invrs_kappa, p_in_Pa_zm(2:gr%nz-1) )
p_in_Pa_zm(2:gr%nz-1) = p_in_Pa_zm(2:gr%nz-1) * p0
#else
! Calculate pressure on thermodynamic levels.
p_in_Pa(2:gr%nz-1) = p0 * exner(2:gr%nz-1)**invrs_kappa
! Calculate pressure on momentum levels.
p_in_Pa_zm(2:gr%nz-1) = p0 * exner_zm(2:gr%nz-1)**invrs_kappa
#endif
! Calculate exner the model lower boundary or surface.
! exner1
! = exner2
! | ( grav / Cp )
! | * ( ( z2 - z1 ) / ( thvm2 - thvm1 ) ) * ln( thvm2 / thvm1 );
! + | where thvm2 /= thvm1;
! |
! | ( grav / Cp ) * ( z2 - z1 ) / thvm; where thvm2 = thvm1 (= thvm).
if ( abs( thvm(2) - thvm_zm(1) ) > epsilon( thvm ) * thvm(2) ) then
exner_zm(1) &
= exner(2) &
+ g_ov_Cp * ( gr%zt(2) - gr%zm(1) ) / ( thvm(2) - thvm_zm(1) ) &
* log( thvm(2) / thvm_zm(1) )
else ! thvm(k+1) = thvm_zm(k)
exner_zm(1) &
= exner(2) + g_ov_Cp * ( gr%zt(2) - gr%zm(1) ) / thvm_zm(1)
endif
! Calculate pressure at the model lower boundary or surface.
p_in_Pa_zm(1) = p0 * exner_zm(1)**invrs_kappa
! For the lowest thermodynamic level, which is below the model lower
! boundary, set pressure and exner to the pressure and exner found at the
! model lower boundary.
p_in_Pa(1) = p_in_Pa_zm(1)
exner(1) = exner_zm(1)
return
end subroutine update_pressure
!=============================================================================
subroutine init_pressure( thvm, p_sfc, &
p_in_Pa, exner, p_in_Pa_zm, exner_zm )
! Description:
! Calculates the initial pressure according to the hydrostatic
! approximation. Combining the moist equation of state and the hydrostatic
! approximation, the change of pressure with respect to height can be
! calculated based on theta_v, such that:
!
! dp/dz = - p * grav / ( Rd * theta_v * exner );
!
! where exner = ( p / p0 )^(Rd/Cp);
!
! and where p0 is a reference pressure of 100000 Pa.
!
! The integral equation is set up to integrate over p on the left-hand side
! and integrate over z on the right-hand side. The equation is:
!
! INT(p1:p2) p^(Rd/Cp-1) dp
! = - p0^(Rd/Cp) * ( grav / Rd ) * INT(z1:z2) (1/thvm) dz.
!
! The value of mean theta_v (thvm) is calculated at each thermodynamic grid
! level, and linear interpolation is used in the integral equation for all
! altitude in-between successive thermodynamic levels, such that:
!
! thvm(z) = ( ( thvm2 - thvm1 ) / ( z2 - z1 ) ) * ( z - z1 ) + thvm1.
!
! The integrals are solved, and the results for pressure can be rewritten
! in terms of exner, such that:
!
! exner2 - exner1
! | - ( grav / Cp )
! | * ( ( z2 - z1 ) / ( thvm2 - thvm1 ) ) * ln( thvm2 / thvm1 );
! = | where thvm2 /= thvm1;
! |
! | - ( grav / Cp ) * ( z2 - z1 ) / thvm; where thvm2 = thvm1 (= thvm).
!
! The value of pressure (exner) can be calculated using the above equation
! at all vertical levels once the value of pressure is known at one level.
! Since the surface pressure is known at the initial time, that allows
! pressure to be calculated for the rest of the vertical profile.
! References:
!-----------------------------------------------------------------------
use grid_class, only: &
gr, & ! Variable Type(s)
zt2zm ! Procedure(s)
use constants_clubb, only: &
one, & ! 1
Cp, & ! Specific heat of dry air [J/(kg K)]
kappa, & ! Rd/Cp [-]
p0, & ! Reference pressure of 100000 Pa [Pa]
grav ! Acceleration of gravity (9.81 m/s^2) [m/s^2]
use clubb_precision, only: &
core_rknd ! Variable(s)
implicit none
! Input Variables
real( kind = core_rknd ), dimension(gr%nz), intent(in) :: &
thvm ! Mean theta_v (thermodynamic levels) [K]
real( kind = core_rknd ), intent(in) :: &
p_sfc ! Surface pressure [Pa]
! Output Variables
real( kind = core_rknd ), dimension(gr%nz), intent(out) :: &
p_in_Pa, & ! Pressure (thermodynamic levels) [Pa]
exner, & ! Exner function (thermodynamic levels) [-]
p_in_Pa_zm, & ! Pressure on momentum levels [Pa]
exner_zm ! Exner function on momentum levels [-]
! Local Variables
real( kind = core_rknd ), dimension(gr%nz) :: &
thvm_zm ! Mean theta_v interpolated to momentum grid levels [K]
real( kind = core_rknd ), parameter :: &
g_ov_Cp = grav / Cp ! g / Cp [K/m]
integer :: k ! Vertical level index
! The pressure (and exner) at the lowest momentum level is the surface
! pressure (and exner based on the surface pressure).
p_in_Pa_zm(1) = p_sfc
exner_zm(1) = ( p_sfc / p0 )**kappa
! Set the pressure (and exner) at the lowest thermodynamic level, which is
! below the model lower boundary, to their values at the model lower
! boundary or surface.
p_in_Pa(1) = p_in_Pa_zm(1)
exner(1) = exner_zm(1)
! Interpolate theta_v to momentum levels.
thvm_zm = zt2zm( thvm )
! Calculate exner at all other thermodynamic and momentum grid levels.
! exner2
! = exner1
! | ( grav / Cp )
! | * ( ( z2 - z1 ) / ( thvm2 - thvm1 ) ) * ln( thvm2 / thvm1 );
! - | where thvm2 /= thvm1;
! |
! | ( grav / Cp ) * ( z2 - z1 ) / thvm; where thvm2 = thvm1 (= thvm).
! Calculate exner at thermodynamic level 2 (first thermodynamic grid level
! that is above the lower boundary).
if ( abs( thvm(2) - thvm_zm(1) ) > epsilon( thvm ) * thvm(2) ) then
exner(2) &
= exner_zm(1) &
- g_ov_Cp * ( gr%zt(2) - gr%zm(1) ) / ( thvm(2) - thvm_zm(1) ) &
* log( thvm(2) / thvm_zm(1) )
else ! thvm(2) = thvm_zm(1)
exner(2) = exner_zm(1) - g_ov_Cp * ( gr%zt(2) - gr%zm(1) ) / thvm(2)
endif
! Calculate pressure on thermodynamic levels.
p_in_Pa(2) = p0 * exner(2)**(one/kappa)
! Loop over all other thermodynamic vertical grid levels.
do k = 3, gr%nz, 1
! Calculate exner on thermodynamic levels.
if ( abs( thvm(k) - thvm(k-1) ) > epsilon( thvm ) * thvm(k) ) then
exner(k) &
= exner(k-1) &
- g_ov_Cp * ( gr%zt(k) - gr%zt(k-1) ) / ( thvm(k) - thvm(k-1) ) &
* log( thvm(k) / thvm(k-1) )
else ! thvm(k+1) = thvm(k)
exner(k) = exner(k-1) - g_ov_Cp * ( gr%zt(k) - gr%zt(k-1) ) / thvm(k)
endif
! Calculate pressure on thermodynamic levels.
p_in_Pa(k) = p0 * exner(k)**(one/kappa)
enddo ! k = 2, gr%nz, 1
! Loop over all momentum grid levels.
do k = 2, gr%nz, 1
! Calculate exner on momentum levels.
if ( abs( thvm(k) - thvm_zm(k) ) > epsilon( thvm ) * thvm(k) ) then
exner_zm(k) &
= exner(k) &
- g_ov_Cp * ( gr%zm(k) - gr%zt(k) ) / ( thvm_zm(k) - thvm(k) ) &
* log( thvm_zm(k) / thvm(k) )
else ! thvm(k) = thvm_zm(k)
exner_zm(k) &
= exner(k) - g_ov_Cp * ( gr%zm(k) - gr%zt(k) ) / thvm_zm(k)
endif
! Calculate pressure on momentum levels.
p_in_Pa_zm(k) = p0 * exner_zm(k)**(one/kappa)
enddo ! k = 2, gr%nz, 1
return
end subroutine init_pressure
!=============================================================================
elemental function calculate_thvm( thlm, rtm, rcm, exner, thv_ds_zt ) &
result( thvm )
! Description:
! Calculates mean theta_v based on a linearized approximation to the theta_v
! equation. This equation also includes liquid water loading.
! References:
!-----------------------------------------------------------------------
use constants_clubb, only: &
Lv, & ! Latent Heat of Vaporizaion [J/kg]
Cp, & ! Specific Heat of Dry Air [J/(kg K)]
ep1, & ! Rv/Rd - 1 [-]
ep2 ! Rv/Rd [-]
use clubb_precision, only: &
core_rknd
implicit none
! Input Variables
real( kind = core_rknd ), intent(in) :: &
thlm, & ! Mean theta_l (thermodynamic levels) [K]
rtm, & ! Mean total water (thermodynamic levels) [kg/kg]
rcm, & ! Mean cloud water (thermodynamic levels) [kg/kg]
exner, & ! Exner function (thermodynamic levels) [-]
thv_ds_zt ! Reference theta_v on thermodynamic levels [K]
! Return Variable
real( kind = core_rknd ) :: &
thvm ! Mean theta_v (thermodynamic levels) [K]
! Calculate mean theta_v
thvm = thlm + ep1 * thv_ds_zt * rtm &
+ ( Lv / ( Cp * exner ) - ep2 * thv_ds_zt ) * rcm
return
end function calculate_thvm
!=============================================================================
end module calc_pressure