-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchap_expression_analysis.R
261 lines (209 loc) · 9.9 KB
/
chap_expression_analysis.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
#------------- chap_expression_analysis.r -----------------
# read the expression levels for each chaperon,
# and protein, to have an expression summery for them in each cancer.
#------------------------------
#-------- includes --------
library(readxl)
library(tools)
library(pheatmap)
library(reshape2)
library(plyr)
library(ggplot2)
library(tibble)
#-------- make a name 'dictionary' ---------
# to convert long name to short
keys <- c("Breast Invasive Carcinoma",
"Colon_Adenocarcinoma",
"Head_and_Neck_Squamous_Cell_Carcinoma",
"Kidney_Renal_Clear_Cell_Carcinoma",
"Kidney_Renal_Papillary_Cell_Carcinoma",
"Liver_Hepatocellular_Carcinoma",
"Lung_Adenocarcinoma",
"Lung_Squamous_Cell_Carcinoma",
"Prostate_Adenocarcinoma",
"Stomach_Adenocarcinoma",
"Thyroid_Carcinoma",
"Uterine_Corpus_Endometrial_Carcinoma")
cancer_names <- c("BRCA", "COAD", "HNSC", "KIRC", "KIRP", "LIHC",
"LUAD", "LUSC", "PRAD", "STAD", "THCA", "UCEC")
names(cancer_names) <- keys
#-------- functions --------
exp_data_for_gene_list_ENSID <- function(gene_list_data) {
# read each file in the path and build a expXcancer for each gene
folder_path <- "HPC/DATA/expression"
files <- list.files(folder_path)
ex_tables <- list()
for (file in files) {
chap_exp <- read.table(paste(folder_path,"/",file, sep = ""),
header = FALSE)
# filter only the chap data
chap_exp <- chap_exp[chap_exp$V1 %in% gene_list_data$ENSID, ]
rownames(chap_exp) <- gene_list_data$Symbol[match(chap_exp$V1, gene_list_data$ENSID)]
cncr_name <- cancer_names[file_path_sans_ext(file)]
ex_tables[[cncr_name]] <- chap_exp[,-1]
}
return(ex_tables)
}
#-------- load chaperons expression data from excel files --------
chaps_meta <- read.table("HPC/Mito_ch_genes.tab", sep="\t", header=TRUE,
stringsAsFactors=FALSE, quote="", fill=FALSE)
exp_tables <- exp_data_for_gene_list_ENSID(chaps_meta)
#-------- create a table of mean/median expressions for chap per cancer ------
exp_mean <- data.frame(matrix(nrow=length(chaps_meta$Symbol),
ncol = length(exp_tables)))
row.names(exp_mean) <- chaps_meta$Symbol
colnames(exp_mean) <- names(exp_tables)
exp_median <- data.frame(matrix(nrow=length(chaps_meta$Symbol),
ncol = length(exp_tables)))
row.names(exp_median) <- chaps_meta$Symbol
colnames(exp_median) <- names(exp_tables)
for (cncr in names(exp_tables)) {
exp_tbl <- as.matrix(exp_tables[[cncr]])
for (chp in chaps_meta$Symbol) {
avrg <- mean(exp_tbl[chp,])
medn <- median(exp_tbl[chp,])
exp_mean[chp, cncr] <- avrg
exp_median[chp, cncr] <- medn
}
}
write.csv(exp_mean, file = "output/chap_mean_expressions.csv")
write.csv(exp_median, file = "output/chap_median_expressions.csv")
#-------- visualize chaps as heat map --------
pheatmap(exp_median, clustering_method = "ward.D", clustering_distance_rows = "manhattan",
filename = "output/median_chap_expression_heatmap.pdf",
color=colorRampPalette(c("white", "orange"))(100),
main = "Median Chaperon Expression", angle_col = 315,display_numbers = TRUE)
pheatmap(exp_mean, clustering_method = "ward.D", clustering_distance_rows = "manhattan",
filename = "output/mean_chap_expression_heatmap.pdf",
color=colorRampPalette(c("white", "chartreuse3"))(100),
main = "Mean Chaperon Expression", angle_col = 315,display_numbers = TRUE)
# reorder heat map by row sum and col sum:
chp_sum <- rowSums(exp_median)
chap_ordered <- t(exp_median[order(chp_sum,decreasing=T),])
cncr_sum <- rowSums(chap_ordered)
chap_ordered <- t(chap_ordered[order(cncr_sum,decreasing=T),])
pheatmap(log10(chap_ordered), cluster_rows = F, cluster_cols = F,
color=colorRampPalette(c("white", "orange"))(100),
filename = "output/Median_log10_chap_expression_heatmap.pdf",
main = "Log10 of Median Chaperon Expression", angle_col = 315,
display_numbers = TRUE)
#-------- visualize chaps expression as distribution --------
chap_expr <- read.csv("output/chap_median_expressions.csv", row.names = 1)
chap_expr_long <- melt(t(chap_expr))
chap_expr_long$log <- log10(chap_expr_long$value)
hist(log10(chap_expr_long$value))
# chap exp distribute
p<-ggplot(chap_expr_long, aes(x=log)) +
geom_histogram(bins=30, fill="coral", alpha=0.7) +
labs(x="Log10 expression levels")+
theme_minimal()
p
# chap exp boxplots
g1 <- ggplot(chap_expr_long, aes(x=reorder(Var2, log, FUN = median, ),y=log))+
geom_boxplot(outlier.colour="black", outlier.shape=16,
outlier.size=2, notch=FALSE)+
labs(y="Log10 expression levels")+
theme_minimal()+
theme(axis.text.x=element_text(angle=45, hjust=1),
axis.title.x = element_blank())
g1
ggsave("output/paper_figures/chap_exp_hist.pdf",
plot = p, width = 5, height = 5)
ggsave("output/paper_figures/chap_exp_boxplot.pdf",
plot = g1, width = 5, height = 5)
#-------- load protein expression data from excel files -------
prots_meta <- read.table("HPC/Mito_genes.tab", sep="\t", header=TRUE,
stringsAsFactors=FALSE, quote="", fill=FALSE)
prots_meta <- prots_meta[!prots_meta$ENSID %in% chaps_meta$ENSID, ]
exp_p_tables <- exp_data_for_gene_list_ENSID(prots_meta)
#-------- create a table of mean/median expressions for protein per cancer ------
exp_mean_prot <- data.frame(matrix(nrow=length(prots_meta$Symbol),
ncol = length(exp_p_tables)))
row.names(exp_mean_prot) <- prots_meta$Symbol
colnames(exp_mean_prot) <- names(exp_p_tables)
exp_med_prot <- data.frame(matrix(nrow=length(prots_meta$Symbol),
ncol = length(exp_p_tables)))
row.names(exp_med_prot) <- prots_meta$Symbol
colnames(exp_med_prot) <- names(exp_p_tables)
for (cncr in names(exp_p_tables)) {
exp_tbl <- as.matrix(exp_p_tables[[cncr]])
for (prt in prots_meta$Symbol) {
avrg <- mean(exp_tbl[prt,])
medn <- median(exp_tbl[prt,])
exp_mean_prot[prt, cncr] <- avrg
exp_med_prot[prt, cncr] <- medn
}
}
write.csv(t(exp_mean_prot), file = "output/prot_mean_expressions.csv")
write.csv(t(exp_med_prot), file = "output/prot_median_expressions.csv")
#-------- visualize prots as histogram per cancer --------
exp_med_prot <- read.csv("output/prot_median_expressions.csv", row.names = 1)
prot_exp_nolog <- melt(t(exp_med_prot))
prot_exp <- melt(t(log10(exp_med_prot)))
head(prot_exp)
ggplot(prot_exp_nolog, aes(x=value, fill=Var2, color=Var2)) +
geom_histogram(position="identity", alpha=0.5)+
xlab("protein expression") + ylab("Count")
g <- ggplot(prot_exp, aes(x=value, fill=Var2, color=Var2)) +
geom_histogram(position="identity", alpha=0.5)+
xlab("Log10 of protein expression") + ylab("Count")
ggsave("output/figures/prot_med_exp_per_cancer.pdf", g)
mu <- ddply(prot_exp_nolog, "Var2", summarise, grp.mean=mean(value))
big_only <- filter(prot_exp, value > 2 | value == 2)
ggplot(big_only, aes(x=value, fill=Var2, color=Var2)) +
geom_histogram(position="identity", alpha=0.5)+
xlab("Log10 of protein expression") + ylab("Count") +
ggtitle("Protein expression of 100 and above")
#-------- visualize prots as heatmap --------
pheatmap(exp_med_prot, clustering_method = "ward.D", clustering_distance_rows = "manhattan",
filename = "output/median_prot_expression_heatmap.pdf",
color=colorRampPalette(c("white", "orange"))(100),
main = "Median Protein Expression", angle_col = 315, show_rownames = FALSE)
# reorder heat map by row sum and col sum:
prt_sum <- rowSums(exp_med_prot)
prot_ordered <- t(exp_med_prot[order(prt_sum,decreasing=T),])
cncr_sum <- rowSums(prot_ordered)
prot_ordered <- t(prot_ordered[order(cncr_sum,decreasing=T),])
pheatmap(prot_ordered, cluster_rows = F, cluster_cols = F,
color=colorRampPalette(c("white", "orange"))(100),
filename = "output/Median_prot_expression_heatmap_unclustered.pdf",
main = "Log10 of Median Protein Expression", angle_col = 315, show_rownames = FALSE)
# use log10
logs <- log10(prot_ordered)
logs[is.infinite(logs)] <- -3
pheatmap(logs, cluster_rows = F, cluster_cols = F,
color=colorRampPalette(c("white", "orange"))(100),
filename = "output/Median_log10_prot_expression_heatmap.pdf",
main = "Log10 of Median Protein Expression", angle_col = 315, show_rownames = FALSE)
#-------- correlate median chap expression with client number (chap degree) --------
chap_expr <- read.csv("output/chap_median_expressions.csv", row.names = 1)
chap_degree <- read.csv("output/chap_folding_percent_of_all.csv", row.names = 1)
chap_expr <- log10(chap_expr)
chap_degree <- chap_degree*1143 # to turn it back from percentage to degree
# make sure the cols and rows are ordered is the same way
chap_degree <- chap_degree[,order(colnames(chap_degree))]
chap_degree <- chap_degree[order(rownames(chap_degree)),]
chap_expr <- chap_expr[,order(colnames(chap_expr))]
chap_expr <- chap_expr[order(rownames(chap_expr)),]
exp_vec <- as.vector(as.matrix(chap_expr))
deg_vec <- as.vector(as.matrix(chap_degree))
# calc correlation
st <- cor.test(exp_vec, deg_vec, method="spearman", exact=FALSE)
obs_pval <- st$p.value
obs_rval <- st$estimate
# visualize
can_vec <- rep(colnames(chap_expr), each = length(rownames(chap_expr)))
ch_vec <- rep(rownames(chap_expr), times=length(colnames(chap_expr)))
tbl_all <- tibble(expression=exp_vec, fold=deg_vec, cancer=can_vec, chap=ch_vec)
ggplot(tbl_all, aes(x=expression, y=fold, color=chap))+
geom_point(size=3)+
ggtitle("Chaperon Degree over Median Log Expression levels")+
ylab("Chaperon Degree")+
xlab("Log(10) Median expression level")
# boxplot for degree
mlt_deg <- as.data.frame(melt(t(chap_degree)))
g1 <- ggplot(mlt_deg, aes(x=Var2,y=value))+
geom_boxplot(outlier.colour="black", outlier.shape=16,
outlier.size=2, notch=FALSE)+
theme(axis.text.x=element_text(angle=45, hjust=1))
g1