|
| 1 | +{ |
| 2 | + "results": { |
| 3 | + "mmlu_abstract_algebra": { |
| 4 | + "alias": "abstract_algebra", |
| 5 | + "acc,none": 0.34, |
| 6 | + "acc_stderr,none": 0.047609522856952344 |
| 7 | + } |
| 8 | + }, |
| 9 | + "group_subtasks": { |
| 10 | + "mmlu_abstract_algebra": [] |
| 11 | + }, |
| 12 | + "configs": { |
| 13 | + "mmlu_abstract_algebra": { |
| 14 | + "task": "mmlu_abstract_algebra", |
| 15 | + "task_alias": "abstract_algebra", |
| 16 | + "tag": "mmlu_stem_tasks", |
| 17 | + "dataset_path": "hails/mmlu_no_train", |
| 18 | + "dataset_name": "abstract_algebra", |
| 19 | + "dataset_kwargs": { |
| 20 | + "trust_remote_code": true |
| 21 | + }, |
| 22 | + "test_split": "test", |
| 23 | + "fewshot_split": "dev", |
| 24 | + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
| 25 | + "doc_to_target": "answer", |
| 26 | + "unsafe_code": false, |
| 27 | + "doc_to_choice": [ |
| 28 | + "A", |
| 29 | + "B", |
| 30 | + "C", |
| 31 | + "D" |
| 32 | + ], |
| 33 | + "description": "The following are multiple choice questions (with answers) about abstract algebra.\n\n", |
| 34 | + "target_delimiter": " ", |
| 35 | + "fewshot_delimiter": "\n\n", |
| 36 | + "fewshot_config": { |
| 37 | + "sampler": "first_n" |
| 38 | + }, |
| 39 | + "num_fewshot": 0, |
| 40 | + "metric_list": [ |
| 41 | + { |
| 42 | + "metric": "acc", |
| 43 | + "aggregation": "mean", |
| 44 | + "higher_is_better": true |
| 45 | + } |
| 46 | + ], |
| 47 | + "output_type": "multiple_choice", |
| 48 | + "repeats": 1, |
| 49 | + "should_decontaminate": false, |
| 50 | + "metadata": { |
| 51 | + "version": 1.0 |
| 52 | + } |
| 53 | + } |
| 54 | + }, |
| 55 | + "versions": { |
| 56 | + "mmlu_abstract_algebra": 1.0 |
| 57 | + }, |
| 58 | + "n-shot": { |
| 59 | + "mmlu_abstract_algebra": 0 |
| 60 | + }, |
| 61 | + "higher_is_better": { |
| 62 | + "mmlu_abstract_algebra": { |
| 63 | + "acc": true |
| 64 | + } |
| 65 | + }, |
| 66 | + "n-samples": { |
| 67 | + "mmlu_abstract_algebra": { |
| 68 | + "original": 100, |
| 69 | + "effective": 100 |
| 70 | + } |
| 71 | + }, |
| 72 | + "config": { |
| 73 | + "model": "sae_steered_beta", |
| 74 | + "model_args": "base_name=google/gemma-2-2b,csv_path=/home/cs29824/matthew/lm-evaluation-harness/examples/dog_steer.csv", |
| 75 | + "model_num_parameters": 0, |
| 76 | + "model_dtype": null, |
| 77 | + "model_revision": "main", |
| 78 | + "model_sha": "c5ebcd40d208330abc697524c919956e692655cf", |
| 79 | + "batch_size": "auto", |
| 80 | + "batch_sizes": [ |
| 81 | + 16 |
| 82 | + ], |
| 83 | + "device": "cuda:0", |
| 84 | + "use_cache": null, |
| 85 | + "limit": null, |
| 86 | + "bootstrap_iters": 100000, |
| 87 | + "gen_kwargs": null, |
| 88 | + "random_seed": 0, |
| 89 | + "numpy_seed": 1234, |
| 90 | + "torch_seed": 1234, |
| 91 | + "fewshot_seed": 1234 |
| 92 | + }, |
| 93 | + "git_hash": "e16afa2f", |
| 94 | + "date": 1737419939.4888458, |
| 95 | + "pretty_env_info": "PyTorch version: 2.5.1+cu124\nIs debug build: False\nCUDA used to build PyTorch: 12.4\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 20.04.6 LTS (x86_64)\nGCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0\nClang version: Could not collect\nCMake version: version 3.16.3\nLibc version: glibc-2.31\n\nPython version: 3.11.11 | packaged by conda-forge | (main, Dec 5 2024, 14:17:24) [GCC 13.3.0] (64-bit runtime)\nPython platform: Linux-5.4.0-1125-kvm-x86_64-with-glibc2.31\nIs CUDA available: True\nCUDA runtime version: 10.1.243\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: Quadro RTX 8000\nGPU 1: Quadro RTX 8000\n\nNvidia driver version: 545.23.08\ncuDNN version: Probably one of the following:\n/usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn.so.8.4.1\n/usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.4.1\n/usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.4.1\n/usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.4.1\n/usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.4.1\n/usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.4.1\n/usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.4.1\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nAddress sizes: 46 bits physical, 48 bits virtual\nCPU(s): 16\nOn-line CPU(s) list: 0-15\nThread(s) per core: 1\nCore(s) per socket: 1\nSocket(s): 16\nNUMA node(s): 1\nVendor ID: GenuineIntel\nCPU family: 6\nModel: 85\nModel name: Intel Xeon Processor (Cascadelake)\nStepping: 6\nCPU MHz: 2294.608\nBogoMIPS: 4589.21\nVirtualization: VT-x\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 512 KiB\nL1i cache: 512 KiB\nL2 cache: 64 MiB\nL3 cache: 256 MiB\nNUMA node0 CPU(s): 0-15\nVulnerability Gather data sampling: Unknown: Dependent on hypervisor status\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Vulnerable, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; TSX disabled\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology cpuid tsc_known_freq pni pclmulqdq vmx ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat umip pku avx512_vnni md_clear arch_capabilities\n\nVersions of relevant libraries:\n[pip3] mypy==1.14.1\n[pip3] mypy-extensions==1.0.0\n[pip3] numpy==1.26.4\n[pip3] torch==2.5.1\n[pip3] triton==3.1.0\n[conda] numpy 1.26.4 pypi_0 pypi\n[conda] torch 2.5.1 pypi_0 pypi\n[conda] triton 3.1.0 pypi_0 pypi", |
| 96 | + "transformers_version": "4.48.1", |
| 97 | + "upper_git_hash": null, |
| 98 | + "tokenizer_pad_token": [ |
| 99 | + "<pad>", |
| 100 | + "0" |
| 101 | + ], |
| 102 | + "tokenizer_eos_token": [ |
| 103 | + "<eos>", |
| 104 | + "1" |
| 105 | + ], |
| 106 | + "tokenizer_bos_token": [ |
| 107 | + "<bos>", |
| 108 | + "2" |
| 109 | + ], |
| 110 | + "eot_token_id": 1, |
| 111 | + "max_length": 8192, |
| 112 | + "task_hashes": {}, |
| 113 | + "model_source": "sae_steered_beta", |
| 114 | + "model_name": "/home/cs29824/matthew/lm-evaluation-harness/examples/dog_steer.csv", |
| 115 | + "model_name_sanitized": "__home__cs29824__matthew__lm-evaluation-harness__examples__dog_steer.csv", |
| 116 | + "system_instruction": null, |
| 117 | + "system_instruction_sha": null, |
| 118 | + "fewshot_as_multiturn": false, |
| 119 | + "chat_template": null, |
| 120 | + "chat_template_sha": null, |
| 121 | + "start_time": 2970008.635285475, |
| 122 | + "end_time": 2970078.697630497, |
| 123 | + "total_evaluation_time_seconds": "70.06234502233565" |
| 124 | +} |
0 commit comments