|
| 1 | +======== |
| 2 | +Surfaces |
| 3 | +======== |
| 4 | + |
| 5 | +OC157 |
| 6 | +===== |
| 7 | + |
| 8 | +Summary |
| 9 | +------- |
| 10 | + |
| 11 | +Performance in predicting relative energies between three structures for 157 |
| 12 | +molecule-surface combinations. |
| 13 | + |
| 14 | +Metrics |
| 15 | +------- |
| 16 | + |
| 17 | +1. Energy error |
| 18 | + |
| 19 | +How accurate all relatve energy predictions are. |
| 20 | + |
| 21 | +For each group of three structures, the relative energies are calculated for all pairs |
| 22 | +of structures. Models receive a score based on the mean difference between these |
| 23 | +predictions and the reference, averaged over all pairs and over all combinations. |
| 24 | + |
| 25 | +2. Ranking error |
| 26 | + |
| 27 | +Whether the most and least stable strucutres are predicted. |
| 28 | + |
| 29 | +For each group of three structures, the relative energies are calculated for all pairs |
| 30 | +of structures. Models receive a score of 0, 0.5, or 1, based on whether the predicted |
| 31 | +lowest and highest energy pairs match the reference predictions, and this is averaged |
| 32 | +for all 157 combinations. |
| 33 | + |
| 34 | +Data availability |
| 35 | +----------------- |
| 36 | + |
| 37 | +Input data: |
| 38 | + |
| 39 | +* Surfaces were taken from the Open Catalyst Challenge 2023 |
| 40 | + |
| 41 | + * L. Chanussot, A. Das, S. Goyal, T. Lavril, M. Shuaibi, M. Riviere, K. Tran, J. Heras-Domingo, C. Ho, W. Hu, A. Palizhati, A. Sriram, B. Wood, J. Yoon, D. Parikh, C. L. Zitnick, and Z. Ulissi, “Open Catalyst 2020 (OC20) dataset and community challenges,” ACS Catal., vol. 11, pp. 6059–6072, May 2021. |
| 42 | + * R. Tran, J. Lan, M. Shuaibi, B. M. Wood, S. Goyal, A. Das, J. Heras-Domingo, A. Kolluru, A. Rizvi, N. Shoghi, A. Sriram, F. Therrien, J. Abed, O. Voznyy, E. H. Sargent, Z. Ulissi, and C. L. Zitnick, “The Open Catalyst 2022 (OC22) data set and challenges for oxide electro catalysts,” ACS Catal., vol.13, pp. 3066–3084, Mar. 2023. |
| 43 | + |
| 44 | +* Structures containing oxygen (O) and several transition metals (Co, Cr, Fe, Mn, Mo, |
| 45 | + Ni, V and W) were exlcuded due to Hubbard U correction |
| 46 | + |
| 47 | +Reference data: |
| 48 | + |
| 49 | +* Same as input data |
| 50 | +* PBE-D3(BJ), MPRelaxSet settings |
| 51 | + |
| 52 | + |
| 53 | +S24 |
| 54 | +=== |
| 55 | + |
| 56 | +Summary |
| 57 | +------- |
| 58 | + |
| 59 | +Performance in predicting adsorption energies for a diverse set of surfaces and adsorbates. |
| 60 | + |
| 61 | +Metrics |
| 62 | +------- |
| 63 | + |
| 64 | +Adsorption energy error |
| 65 | + |
| 66 | +For each combination of surface, molecule, and surface + molecule, the adsorption |
| 67 | +energy is calculated by taking the difference between the energy of the surface + |
| 68 | +molecule and the sum of individual surface and molecule energies. This is compared to |
| 69 | +the reference adsorption energy, calculated in the same way. |
| 70 | + |
| 71 | +Data availability |
| 72 | +----------------- |
| 73 | + |
| 74 | +Input data: |
| 75 | + |
| 76 | +* Structures were taken from an amalgamation of published and unpublished works, including: |
| 77 | + |
| 78 | + * Y. S. Al-Hamdani, M. Rossi, D. Alfè, T. Tsatsoulis, B. Ramberger, J. G. Brandenburg, A. Zen, G. Kresse, A. Grüneis, A. Tkatchenko, and A. Michaelides, “Properties of the water to boron nitride interaction: From zero to two dimensions with benchmark accuracy,” J. Chem. Phys., vol. 147, p. 044710, July 2017. 35 |
| 79 | + * J. G. Brandenburg, A. Zen, M. Fitzner, B. Ramberger, G. Kresse, T. Tsatsoulis, A. Grüneis, A. Michaelides, and D. Alfè, “Physisorption of water on graphene: Subchemical accuracy from many- body electronic structure methods,” J. Phys. Chem. Lett., vol. 10, pp. 358–368, Feb. 2019. |
| 80 | + * C. Ehlert, A. Piras, and G. Gryn’ova, “CO2 on graphene: Benchmarking computational approaches to noncovalent interactions,” ACS Omega, vol. 8, pp. 35768–35778, Oct. 2023. |
| 81 | + * T. Tsatsoulis, S. Sakong, A. Groß, and A. Grüneis, “Reaction energetics of hydrogen on Si(100) surface: A periodic many-electron theory study,” J. Chem. Phys., vol. 149, p. 244105, Dec. 2018. |
| 82 | + * T. Tsatsoulis, F. Hummel, D. Usvyat, M. Schütz, G. H. Booth, S. S. Binnie, M. J. Gillan, D. Alfè, A. Michaelides, and A. Grüneis, “A comparison between quantum chemistry and quantum Monte Carlo techniques for the adsorption of water on the (001) LiH surface,” J. Chem. Phys., vol. 146, p. 204108, May 2017. |
| 83 | + * H.-Z. Ye and T. C. Berkelbach, “Ab initio surface chemistry with chemical accuracy,” arXiv preprint arXiv:2309.14640, 2023. |
| 84 | + * P. G. Lustemberg, P. N. Plessow, Y. Wang, C. Yang, A. Nefedov, F. Studt, C. Wöll, and M. V. Ganduglia-Pirovano, “Vibrational frequencies of cerium-oxide-bound CO: A challenge for conventional dft methods,” Phys. Rev. Lett., vol. 125, p. 256101, Dec. 2020. |
| 85 | + * B. X. Shi, A. Zen, V. Kapil, P. R. Nagy, A. Grüneis, and A. Michaelides, “Many-body methods for surface chemistry come of age: Achieving consensus with experiments,” J. Am. Chem. Soc., vol. 145, pp. 25372–25381, Nov. 2023. |
| 86 | + * N. Hanikel, X. Pei, S. Chheda, H. Lyu, W. Jeong, J. Sauer, L. Gagliardi, and O. M. Yaghi, “Evolution of water structures in metal-organic frameworks for improved atmospheric water harvesting,” Science, vol. 374, pp. 454–459, 2021. |
| 87 | + * F. Berger, M. Rybicki, and J. Sauer, “Molecular dynamics with chemical accuracy–Alkane adsorption in acidic zeolites,” ACS Catal., vol. 13, pp. 2011–2024, 2023. |
| 88 | + * F. Berger and J. Sauer, “Dimerization of linear butenes and pentenes in an acidic zeolite (H-MFI),” Angew. Chem., Int. Ed., vol. 60, pp. 3529–3533, 2021. |
| 89 | + |
| 90 | +Reference data: |
| 91 | + |
| 92 | +* Same as input data |
| 93 | +* PBE-D3(BJ), MPRelaxSet settings |
0 commit comments