-
Notifications
You must be signed in to change notification settings - Fork 100
/
Copy path_common.R
141 lines (117 loc) · 3.75 KB
/
_common.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
library(knitr)
opts_chunk$set(
comment = "#>",
message = FALSE,
warning = FALSE,
cache = TRUE,
eval = TRUE,
tidy = "styler",
dev = "svglite",
dpi = 105, # this creates 2*105 dpi at 6in, which is 300 dpi at 4.2in
fig.align = 'center',
fig.width = 6,
fig.asp = 0.618, # 1 / phi
dev.args = list(pdf = list(colormodel = 'cmyk', useDingats = TRUE))
)
opts_template$set(
fig.large = list(fig.asp = 0.8),
fig.square = list(fig.asp = 1),
fig.long = list(fig.asp = 1.5)
)
# library(paletteer)
# library(prismatic)
# library(magrittr)
# paletteer_d("RColorBrewer::Set3") %>%
# clr_saturate(0.25) %>%
# clr_darken(0.15) %>%
# plot()
discrete_colors <- c("#5BBCACFF", "#D5D587FF", "#9993C5FF", "#DE6454FF",
"#5497C2FF", "#DA9437FF", "#92C22BFF", "#D8A8C1FF",
"#C0ACACFF", "#B556B7FF", "#A3CA9AFF", "#D7C637FF")
alpha_viridis <- function(...) {
scale_fill_gradientn(..., colors = viridis::viridis(256, alpha = 0.7))
}
suppressPackageStartupMessages(library(tidyverse))
suppressPackageStartupMessages(library(tidymodels))
theme_set(theme_light())
tidymodels_prefer()
conflicted::conflict_prefer("vi", "vip")
conflicted::conflict_prefer("explain", "lime")
update_geom_defaults("col", list(fill = "#8097ae", alpha = 0.9))
update_geom_defaults("bar", list(fill = "#8097ae", alpha = 0.9))
update_geom_defaults("point", list(color = "#566675"))
update_geom_defaults("line", list(color = "#566675", alpha = 0.7))
options(
ggplot2.discrete.fill = discrete_colors,
ggplot2.discrete.colour = discrete_colors,
ggplot2.continuous.fill = alpha_viridis,
ggplot2.continuous.colour = alpha_viridis
)
# https://github.com/EmilHvitfeldt/smltar/issues/114
hook_output = knit_hooks$get('output')
knit_hooks$set(output = function(x, options) {
# this hook is used only when the linewidth option is not NULL
if (!is.null(n <- options$linewidth)) {
x = knitr:::split_lines(x)
# any lines wider than n should be wrapped
if (any(nchar(x) > n)) x = strwrap(x, width = n)
x = paste(x, collapse = '\n')
}
hook_output(x, options)
})
options(crayon.enabled = FALSE)
library(htmltools)
library(quanteda)
columnize <- function(words, ncol = 5) {
tagList(
tags$div(
words %>%
map(tags$p) %>%
tagList(),
style = sprintf("column-count:%d;font-size:11pt;line-height:11.5pt",
as.integer(ncol))
)
)
}
sparse_bp <- hardhat::default_recipe_blueprint(composition = "dgCMatrix")
## for Keras chapters
keras_predict <- function(model, baked_data, response) {
predictions <- predict(model, baked_data)[, 1]
tibble(
.pred_1 = predictions,
.pred_class = if_else(.pred_1 < 0.5, 0, 1),
state = response
) %>%
mutate(across(c(state, .pred_class),
~ factor(.x, levels = c(1, 0))))
}
autoplot.conf_mat <- function(object, type = "heatmap", ...) {
cm_heat(object)
}
cm_heat <- function(x) {
`%+%` <- ggplot2::`%+%`
table <- x$table
df <- as.data.frame.table(table)
# Force known column names, assuming that predictions are on the
# left hand side of the table (#157).
names(df) <- c("Prediction", "Truth", "Freq")
# Have prediction levels going from high to low so they plot in an
# order that matches the LHS of the confusion matrix
lvls <- levels(df$Prediction)
df$Prediction <- factor(df$Prediction, levels = rev(lvls))
df %>%
ggplot2::ggplot(
ggplot2::aes(
x = Truth,
y = Prediction,
fill = Freq
)
) %+%
ggplot2::geom_tile() %+%
ggplot2::scale_fill_gradient(low = "grey99", high = "#5781AE") %+%
ggplot2::theme(
panel.background = ggplot2::element_blank(),
legend.position = "none"
) %+%
ggplot2::geom_text(ggplot2::aes(label = Freq))
}