|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# A/B Testing With Pandas" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "code", |
| 12 | + "execution_count": 2, |
| 13 | + "metadata": {}, |
| 14 | + "outputs": [], |
| 15 | + "source": [ |
| 16 | + "import pandas as pd" |
| 17 | + ] |
| 18 | + }, |
| 19 | + { |
| 20 | + "cell_type": "markdown", |
| 21 | + "metadata": {}, |
| 22 | + "source": [ |
| 23 | + "## Analyzing Ad Sources" |
| 24 | + ] |
| 25 | + }, |
| 26 | + { |
| 27 | + "cell_type": "code", |
| 28 | + "execution_count": 6, |
| 29 | + "metadata": {}, |
| 30 | + "outputs": [ |
| 31 | + { |
| 32 | + "name": "stdout", |
| 33 | + "output_type": "stream", |
| 34 | + "text": [ |
| 35 | + " user_id utm_source day \\\n", |
| 36 | + "0 008b7c6c-7272-471e-b90e-930d548bd8d7 google 6 - Saturday \n", |
| 37 | + "1 009abb94-5e14-4b6c-bb1c-4f4df7aa7557 facebook 7 - Sunday \n", |
| 38 | + "2 00f5d532-ed58-4570-b6d2-768df5f41aed twitter 2 - Tuesday \n", |
| 39 | + "3 011adc64-0f44-4fd9-a0bb-f1506d2ad439 google 2 - Tuesday \n", |
| 40 | + "4 012137e6-7ae7-4649-af68-205b4702169c facebook 7 - Sunday \n", |
| 41 | + "\n", |
| 42 | + " ad_click_timestamp experimental_group \n", |
| 43 | + "0 7:18 A \n", |
| 44 | + "1 NaN B \n", |
| 45 | + "2 NaN A \n", |
| 46 | + "3 NaN B \n", |
| 47 | + "4 NaN B \n" |
| 48 | + ] |
| 49 | + } |
| 50 | + ], |
| 51 | + "source": [ |
| 52 | + "ad_clicks = pd.read_csv('ad_clicks.csv')\n", |
| 53 | + "\n", |
| 54 | + "print(ad_clicks.head())" |
| 55 | + ] |
| 56 | + }, |
| 57 | + { |
| 58 | + "cell_type": "markdown", |
| 59 | + "metadata": {}, |
| 60 | + "source": [ |
| 61 | + "## Which ad platform is getting the most views ?" |
| 62 | + ] |
| 63 | + }, |
| 64 | + { |
| 65 | + "cell_type": "code", |
| 66 | + "execution_count": 7, |
| 67 | + "metadata": {}, |
| 68 | + "outputs": [ |
| 69 | + { |
| 70 | + "name": "stdout", |
| 71 | + "output_type": "stream", |
| 72 | + "text": [ |
| 73 | + " utm_source user_id\n", |
| 74 | + "0 email 255\n", |
| 75 | + "1 facebook 504\n", |
| 76 | + "2 google 680\n", |
| 77 | + "3 twitter 215\n" |
| 78 | + ] |
| 79 | + } |
| 80 | + ], |
| 81 | + "source": [ |
| 82 | + "# Most Ad. Viewing Platform\n", |
| 83 | + "views_per_platform = ad_clicks.groupby('utm_source').user_id.count().reset_index()\n", |
| 84 | + "\n", |
| 85 | + "print(views_per_platform)" |
| 86 | + ] |
| 87 | + }, |
| 88 | + { |
| 89 | + "cell_type": "markdown", |
| 90 | + "metadata": {}, |
| 91 | + "source": [ |
| 92 | + "## Click rates for each source?" |
| 93 | + ] |
| 94 | + }, |
| 95 | + { |
| 96 | + "cell_type": "code", |
| 97 | + "execution_count": 9, |
| 98 | + "metadata": {}, |
| 99 | + "outputs": [ |
| 100 | + { |
| 101 | + "name": "stdout", |
| 102 | + "output_type": "stream", |
| 103 | + "text": [ |
| 104 | + "is_click utm_source not_clicked clicked percent_clicked\n", |
| 105 | + "0 email 175 80 31.372549\n", |
| 106 | + "1 facebook 324 180 35.714286\n", |
| 107 | + "2 google 441 239 35.147059\n", |
| 108 | + "3 twitter 149 66 30.697674\n" |
| 109 | + ] |
| 110 | + } |
| 111 | + ], |
| 112 | + "source": [ |
| 113 | + "# Percentage of People clicked from Each UTM source\n", |
| 114 | + "ad_clicks['is_click'] = ~ad_clicks.ad_click_timestamp.isnull()\n", |
| 115 | + "\n", |
| 116 | + "\n", |
| 117 | + "clicks_by_source = ad_clicks.groupby(['utm_source', 'is_click']).user_id.count().reset_index()\n", |
| 118 | + "\n", |
| 119 | + "clicks_pivot = clicks_by_source.pivot(columns = 'is_click', index = 'utm_source', values = 'user_id').reset_index()\n", |
| 120 | + "\n", |
| 121 | + "clicks_pivot = clicks_pivot.rename(columns = {False: 'not_clicked', True: 'clicked'})\n", |
| 122 | + "\n", |
| 123 | + "clicks_pivot['percent_clicked'] = (clicks_pivot.clicked / (clicks_pivot.not_clicked + clicks_pivot.clicked)) * 100\n", |
| 124 | + "\n", |
| 125 | + "print(clicks_pivot)" |
| 126 | + ] |
| 127 | + }, |
| 128 | + { |
| 129 | + "cell_type": "markdown", |
| 130 | + "metadata": {}, |
| 131 | + "source": [ |
| 132 | + "## Analyzing an A/B Test\n", |
| 133 | + " \n", |
| 134 | + " Were approximately the same number of people shown both adds? " |
| 135 | + ] |
| 136 | + }, |
| 137 | + { |
| 138 | + "cell_type": "code", |
| 139 | + "execution_count": 10, |
| 140 | + "metadata": {}, |
| 141 | + "outputs": [ |
| 142 | + { |
| 143 | + "name": "stdout", |
| 144 | + "output_type": "stream", |
| 145 | + "text": [ |
| 146 | + " experimental_group user_id\n", |
| 147 | + "0 A 827\n", |
| 148 | + "1 B 827\n" |
| 149 | + ] |
| 150 | + } |
| 151 | + ], |
| 152 | + "source": [ |
| 153 | + "# A/B Analytics \n", |
| 154 | + "\n", |
| 155 | + "AB_test_shown = ad_clicks.groupby('experimental_group').user_id.count().reset_index()\n", |
| 156 | + "\n", |
| 157 | + "print(AB_test_shown)" |
| 158 | + ] |
| 159 | + }, |
| 160 | + { |
| 161 | + "cell_type": "markdown", |
| 162 | + "metadata": {}, |
| 163 | + "source": [ |
| 164 | + "## Total A/B test Click" |
| 165 | + ] |
| 166 | + }, |
| 167 | + { |
| 168 | + "cell_type": "code", |
| 169 | + "execution_count": 11, |
| 170 | + "metadata": {}, |
| 171 | + "outputs": [ |
| 172 | + { |
| 173 | + "name": "stdout", |
| 174 | + "output_type": "stream", |
| 175 | + "text": [ |
| 176 | + "is_click Not Clicked Clicked\n", |
| 177 | + "experimental_group \n", |
| 178 | + "A 517 310\n", |
| 179 | + "B 572 255\n" |
| 180 | + ] |
| 181 | + } |
| 182 | + ], |
| 183 | + "source": [ |
| 184 | + "click_percentage = ad_clicks.groupby(['experimental_group', 'is_click']).user_id.count().reset_index()\n", |
| 185 | + "\n", |
| 186 | + "click_percentage_pivot = click_percentage.pivot(columns = 'is_click', index = 'experimental_group', values = 'user_id')\n", |
| 187 | + "\n", |
| 188 | + "click_percentage_pivot = click_percentage_pivot.rename(columns = {False: 'Not Clicked', True: 'Clicked'})\n", |
| 189 | + "\n", |
| 190 | + "print(click_percentage_pivot)" |
| 191 | + ] |
| 192 | + }, |
| 193 | + { |
| 194 | + "cell_type": "markdown", |
| 195 | + "metadata": {}, |
| 196 | + "source": [ |
| 197 | + "## Clicks Over time across A/B" |
| 198 | + ] |
| 199 | + }, |
| 200 | + { |
| 201 | + "cell_type": "markdown", |
| 202 | + "metadata": {}, |
| 203 | + "source": [ |
| 204 | + "### For A test:" |
| 205 | + ] |
| 206 | + }, |
| 207 | + { |
| 208 | + "cell_type": "code", |
| 209 | + "execution_count": 12, |
| 210 | + "metadata": {}, |
| 211 | + "outputs": [ |
| 212 | + { |
| 213 | + "name": "stdout", |
| 214 | + "output_type": "stream", |
| 215 | + "text": [ |
| 216 | + "is_click day click_percentage %\n", |
| 217 | + "0 1 - Monday 38.053097\n", |
| 218 | + "1 2 - Tuesday 36.134454\n", |
| 219 | + "2 3 - Wednesday 30.645161\n", |
| 220 | + "3 4 - Thursday 40.517241\n", |
| 221 | + "4 5 - Friday 39.843750\n", |
| 222 | + "5 6 - Saturday 38.135593\n", |
| 223 | + "6 7 - Sunday 39.449541\n" |
| 224 | + ] |
| 225 | + } |
| 226 | + ], |
| 227 | + "source": [ |
| 228 | + "# change of clicks over time\n", |
| 229 | + "a_click = ad_clicks[ad_clicks.experimental_group == 'A']\n", |
| 230 | + "\n", |
| 231 | + "b_click = ad_clicks[ad_clicks.experimental_group == 'B']\n", |
| 232 | + "\n", |
| 233 | + "a_click_by_day = a_click.groupby(['day','is_click']).user_id.count().reset_index()\n", |
| 234 | + "\n", |
| 235 | + "a_click_by_day_pivot = a_click_by_day.pivot(columns = 'is_click', index = 'day', values = 'user_id').reset_index()\n", |
| 236 | + "\n", |
| 237 | + "\n", |
| 238 | + "a_click_by_day_pivot[\"click_percentage %\"] = a_click_by_day_pivot[True] * 100 / (a_click_by_day_pivot[False] + a_click_by_day_pivot[True])\n", |
| 239 | + "\n", |
| 240 | + "a_percentage_per_day = a_click_by_day_pivot[['day', 'click_percentage %']]\n", |
| 241 | + "\n", |
| 242 | + "print(a_percentage_per_day)" |
| 243 | + ] |
| 244 | + }, |
| 245 | + { |
| 246 | + "cell_type": "markdown", |
| 247 | + "metadata": {}, |
| 248 | + "source": [ |
| 249 | + "### For B Test:" |
| 250 | + ] |
| 251 | + }, |
| 252 | + { |
| 253 | + "cell_type": "code", |
| 254 | + "execution_count": 13, |
| 255 | + "metadata": {}, |
| 256 | + "outputs": [ |
| 257 | + { |
| 258 | + "name": "stdout", |
| 259 | + "output_type": "stream", |
| 260 | + "text": [ |
| 261 | + "is_click day click_percentage %\n", |
| 262 | + "0 1 - Monday 28.318584\n", |
| 263 | + "1 2 - Tuesday 37.815126\n", |
| 264 | + "2 3 - Wednesday 28.225806\n", |
| 265 | + "3 4 - Thursday 25.000000\n", |
| 266 | + "4 5 - Friday 29.687500\n", |
| 267 | + "5 6 - Saturday 35.593220\n", |
| 268 | + "6 7 - Sunday 31.192661\n" |
| 269 | + ] |
| 270 | + } |
| 271 | + ], |
| 272 | + "source": [ |
| 273 | + "b_click_by_day = b_click.groupby(['day','is_click']).user_id.count().reset_index()\n", |
| 274 | + "\n", |
| 275 | + "b_click_by_day_pivot = b_click_by_day.pivot(columns = 'is_click', index = 'day', values = 'user_id').reset_index()\n", |
| 276 | + "\n", |
| 277 | + "b_click_by_day_pivot[\"click_percentage %\"] = b_click_by_day_pivot[True] * 100 / (b_click_by_day_pivot[False] + b_click_by_day_pivot[True])\n", |
| 278 | + "\n", |
| 279 | + "b_percentage_per_day = b_click_by_day_pivot[['day', 'click_percentage %']]\n", |
| 280 | + "\n", |
| 281 | + "\n", |
| 282 | + "print(b_percentage_per_day)" |
| 283 | + ] |
| 284 | + } |
| 285 | + ], |
| 286 | + "metadata": { |
| 287 | + "kernelspec": { |
| 288 | + "display_name": "Python 3", |
| 289 | + "language": "python", |
| 290 | + "name": "python3" |
| 291 | + }, |
| 292 | + "language_info": { |
| 293 | + "codemirror_mode": { |
| 294 | + "name": "ipython", |
| 295 | + "version": 3 |
| 296 | + }, |
| 297 | + "file_extension": ".py", |
| 298 | + "mimetype": "text/x-python", |
| 299 | + "name": "python", |
| 300 | + "nbconvert_exporter": "python", |
| 301 | + "pygments_lexer": "ipython3", |
| 302 | + "version": "3.7.6" |
| 303 | + } |
| 304 | + }, |
| 305 | + "nbformat": 4, |
| 306 | + "nbformat_minor": 4 |
| 307 | +} |
0 commit comments