-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathxm_launch.py
153 lines (137 loc) · 5.1 KB
/
xm_launch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import os
import shutil
from typing import Any, Dict
from absl import app, flags
from xmanager import xm, xm_local
from a2perf.constants import ENV_NAMES, BenchmarkDomain
from a2perf.launch.docker_utils import (
DOCKER_EXPERIMENT_DIR,
DOCKER_PARTICIPANT_DIR,
GENERIC_GIN_CONFIG_NAME,
get_docker_instructions,
get_entrypoint,
)
_NUM_GPUS = flags.DEFINE_integer("num-gpus", 1, "Number of GPUs to use")
_CPU_BASE_IMAGE = flags.DEFINE_string(
"cpu-base-image",
"gcr.io/deeplearning-platform-release/base-cpu:latest",
"Base image for CPU jobs",
)
_GPU_BASE_IMAGE = flags.DEFINE_string(
"gpu-base-image",
"gcr.io/deeplearning-platform-release/base-gpu:latest",
"Base image for GPU jobs",
)
_ENV_NAME = flags.DEFINE_enum(
"domain",
None,
sum([ENV_NAMES[domain] for domain in BenchmarkDomain], []),
"Domain to run",
)
_USER_ID = flags.DEFINE_integer("user_id", 1000, "User ID")
_USER = flags.DEFINE_string("user", os.getlogin(), "User")
_EXPERIMENT_ID = flags.DEFINE_string("experiment-id", None, "Experiment number")
_EXPERIMENT_NAME = flags.DEFINE_string("experiment-name", None, "Experiment name")
_INTERACTIVE = flags.DEFINE_bool(
"interactive", False, "Whether to run in interactive mode"
)
_SUBMISSION_GIN_CONFIG_PATH = flags.DEFINE_string(
"submission-gin-config-path",
None,
"Path to the gin configuration file",
)
_PARTICIPANT_MODULE_PATH = flags.DEFINE_string(
"participant-module-path",
None,
"Path to the participant training and inference Python modules",
)
_PARTICIPANT_ARGS = flags.DEFINE_string(
"participant-args",
None,
"Additional arguments to pass to the participant's train function",
)
_ROOT_DIR = flags.DEFINE_string(
"root-dir",
None,
"Root directory for the experiment",
)
def main(_):
"""Main function to set up and run the experiment."""
create_experiment = xm_local.create_experiment
with create_experiment(experiment_title=_EXPERIMENT_NAME.value) as experiment:
experiment_id = _EXPERIMENT_ID.value or experiment.experiment_id
base_root_dir = os.path.join(
os.path.expanduser(_ROOT_DIR.value),
str(experiment_id),
_EXPERIMENT_NAME.value,
)
async def make_job(work_unit: xm.WorkUnit, **hparams: Dict[str, Any]) -> None:
work_unit_id = work_unit.work_unit_id
full_root_dir = os.path.join(base_root_dir, str(work_unit_id))
os.makedirs(full_root_dir, exist_ok=True)
# Allow relative path for participant module
participant_module_path = _PARTICIPANT_MODULE_PATH.value
participant_module_path = os.path.abspath(participant_module_path)
docker_gin_config_path = os.path.join(
full_root_dir, GENERIC_GIN_CONFIG_NAME
)
try:
shutil.copy(_SUBMISSION_GIN_CONFIG_PATH.value, docker_gin_config_path)
except IOError as e:
raise IOError(f"Error copying gin config file: {e}")
executor = xm_local.Local(
requirements=xm.JobRequirements(
resources={xm.ResourceType.LOCAL_GPU: _NUM_GPUS.value},
),
docker_options=xm_local.DockerOptions(
ports={},
volumes={
full_root_dir: DOCKER_EXPERIMENT_DIR,
participant_module_path: DOCKER_PARTICIPANT_DIR,
},
interactive=_INTERACTIVE.value,
),
experimental_stream_output=True,
)
docker_instructions = get_docker_instructions(
uid=_USER_ID.value, env_name=_ENV_NAME.value, user=_USER.value
)
base_image = (
_GPU_BASE_IMAGE.value if _NUM_GPUS.value > 0 else _CPU_BASE_IMAGE.value
)
[executable] = experiment.package(
[
xm.python_container(
executor_spec=executor.Spec(),
path=".",
use_deep_module=True,
base_image=base_image,
docker_instructions=docker_instructions,
entrypoint=get_entrypoint(
env_name=_ENV_NAME.value, user=_USER.value
),
)
]
)
hparams.update(
{
"root-dir": DOCKER_EXPERIMENT_DIR,
"submission-gin-config-path": os.path.join(
DOCKER_EXPERIMENT_DIR, GENERIC_GIN_CONFIG_NAME
),
"participant-args": _PARTICIPANT_ARGS.value,
}
)
job = xm.Job(executable, args=hparams, executor=executor)
work_unit.add(job)
experiment.add(make_job, args={})
if __name__ == "__main__":
flags.mark_flags_as_required(
[
_ENV_NAME.name,
_EXPERIMENT_NAME.name,
_ROOT_DIR.name,
_SUBMISSION_GIN_CONFIG_PATH.name,
]
)
app.run(main)