forked from joanllobera/marathon-envs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstable_baselines_sac_train.py
55 lines (44 loc) · 1.44 KB
/
stable_baselines_sac_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import gym
import numpy as np
from stable_baselines.sac.policies import MlpPolicy
from stable_baselines import SAC
from marathon_envs.envs import MarathonEnvs
from stable_baselines.sac.policies import FeedForwardPolicy
from stable_baselines.common.vec_env import DummyVecEnv
from timeit import default_timer as timer
from datetime import timedelta
import os
env_names = [
'Hopper-v0',
# 'Walker2d-v0',
# 'Ant-v0',
# 'MarathonMan-v0',
# 'MarathonManSparse-v0'
]
for env_name in env_names:
print ('-------', env_name, '-------')
env = MarathonEnvs(env_name, 1)
model = SAC(MlpPolicy, env, verbose=1)
start = timer()
model.learn(total_timesteps=50000, log_interval=10)
end = timer()
print(env_name, 'training time', timedelta(seconds=end-start))
model.save(os.path.join('models', "sac_"+env_name))
del model # remove to demonstrate saving and loading
model = SAC.load(os.path.join('models', "sac_"+env_name))
obs = env.reset()
episode_score = 0.
episode_steps = 0
episodes = 0
while episodes < 5:
action, _states = model.predict(obs)
obs, rewards, dones, info = env.step(action)
episode_score += rewards
episode_steps += 1
env.render()
if dones:
print ('episode_score', episode_score, 'episode_steps', episode_steps)
episode_score = 0.
episode_steps = 0
episodes += 1
env.close()