-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
339 lines (273 loc) · 14.9 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import os
import requests
import boto3
import json
import random
import time
import numpy as np
import sys
import matplotlib.pyplot as plt
from datetime import datetime
from threading import Thread
from threading import Event
from dotenv import load_dotenv
from aws_requests_auth.aws_auth import AWSRequestsAuth
load_dotenv() # Load environment variables from the .env file
username_shard = 'FaxyBuyer'
password_shard = 'FaxyBuyer'
mu = 10 # Variables related to Gaussian curve value generation
sigma = 3
conversion_rate = 0.0271 # Conversion rate
avg_session_time = 38 # Random value will be added
accounts_number = 5 # Number of accounts used
# Authorizations for each API to be used (to directly call APIs,
# it's necessary to authenticate through the IAM identity used to create them)
authProd = AWSRequestsAuth(aws_access_key=os.getenv('ACCESS_KEY'),
aws_secret_access_key=os.getenv('SECRET_ACCESS_KEY'),
aws_host=os.getenv('PRODUCTS_HOST'),
aws_region=os.getenv('REGION_NAME'),
aws_service='execute-api')
authCart = AWSRequestsAuth(aws_access_key=os.getenv('ACCESS_KEY'),
aws_secret_access_key=os.getenv('SECRET_ACCESS_KEY'),
aws_host=os.getenv('CARTS_HOST'),
aws_region=os.getenv('REGION_NAME'),
aws_service='execute-api')
authOrder = AWSRequestsAuth(aws_access_key=os.getenv('ACCESS_KEY'),
aws_secret_access_key=os.getenv('SECRET_ACCESS_KEY'),
aws_host=os.getenv('ORDERS_HOST'),
aws_region=os.getenv('REGION_NAME'),
aws_service='execute-api')
client = boto3.client('cognito-idp', region_name=os.getenv('REGION_NAME'))
# Function to check if a number is float
def isfloat(num):
try:
float(num)
return True
except ValueError:
return False
# Function to generate plots
def generatePlots(results, test_len, virtual_users, CV_multiplier):
# Variables to contain error sums
prod_errors_sum = 0
cart_errors_sum = 0
order_errors_sum = 0
# Arrays to contain call averages
product_time_elapsed = np.array([])
cart_time_elapsed = np.array([])
order_time_elapsed = np.array([])
# Arrays to contain success counts per call
product_succs = np.array([])
cart_succs = np.array([])
order_succs = np.array([])
# Iterate through all elements obtained from the Threads, and decompose the results into previously declared variables
for i in range(len(results)):
product_time_elapsed = np.append(product_time_elapsed, results[i]['product/get']['avg_time_elapsed'])
product_succs = np.append(product_succs, results[i]['product/get']['succs'])
prod_errors_sum += results[i]['product/get']['errors']
if 'cart/put' in results[i]:
cart_time_elapsed = np.append(cart_time_elapsed, results[i]['cart/put']['avg_time_elapsed'])
cart_succs = np.append(cart_succs, results[i]['cart/put']['succs'])
cart_errors_sum += results[i]['cart/put']['errors']
order_time_elapsed = np.append(order_time_elapsed, results[i]['order/post']['avg_time_elapsed'])
order_succs = np.append(order_succs, results[i]['order/post']['succs'])
order_errors_sum += results[i]['order/post']['errors']
# Calculate the sum of successful calls
prod_succs_sum = np.sum(product_succs)
cart_succs_sum = np.sum(cart_succs)
order_succs_sum = np.sum(order_succs)
# Calculate the weighted average based on the number of successful calls
if prod_succs_sum != 0:
product_time_elapsed_avg = int(np.average(product_time_elapsed,weights = product_succs))
else:
product_time_elapsed_avg = 0
if cart_succs_sum != 0:
cart_time_elapsed_avg = int(np.average(cart_time_elapsed,weights = cart_succs))
else :
cart_time_elapsed_avg = int(np.average(cart_time_elapsed,weights = cart_succs))
if order_succs_sum != 0:
order_time_elapsed_avg = int(np.average(order_time_elapsed,weights = order_succs))
else:
order_time_elapsed_avg = 0
# Code for constructing the graphical representation of the first plot (shows average time in ms for calls to various APIs)
keys = np.flip(np.array(list(results[0].keys())))
vals = [order_time_elapsed_avg, cart_time_elapsed_avg, product_time_elapsed_avg]
now = datetime.now()
plt.rcParams.update({'font.size': 18})
fig, ax = plt.subplots()
fig.set_size_inches(15, 5)
bars = ax.barh(keys, vals, color='#1a53ff', height=0.5)
plt.xticks([])
vals_ms = []
for c in ax.containers:
vals_ms = [(str(v) + "ms") if v > 0 else "" for v in c.datavalues]
ax.bar_label(bars, labels=vals_ms, padding = -70, color='white', fontweight='bold', fontsize = 14)
plt.xlabel('Average time in ms', fontsize = 16)
plt.title("[Test duration: " + test_len + "s / Concurrently connected users: " + str(int(virtual_users)*accounts_number) + " / Conversion rate multiplier: " + CV_multiplier + "]", fontsize=15)
plt.suptitle("Average wait time for each API call", fontsize=20, y=1)
# Save the plot if there is a "plots" folder
if os.path.isdir("plots"):
plt.savefig("plots/API-ACHT-"+now.strftime("%d-%m-%Y-%H:%M:%S")) #TCM = Average Call Handling Time per [num] Users
plt.show() # Show the first created plot
# Code for constructing the graphical representation of the second plot (shows number of successes/failures of calls to various APIs)
succs_sum = [order_succs_sum, cart_succs_sum ,prod_succs_sum]
errors_sum = [order_errors_sum, cart_errors_sum ,prod_errors_sum]
fig, ax = plt.subplots()
fig.set_size_inches(15, 5)
errors = ax.barh(keys, errors_sum, color='#b30000', height=0.5)
calls = ax.barh(keys, succs_sum, left=errors_sum ,color='#5ad45a', height=0.5)
plt.xticks([])
ax.bar_label(calls, padding = -45, color='black', fontweight='bold', fontsize = 14)
n = 0
for c in ax.containers:
if n == 0:
labels = [v if v > 0 else "" for v in c.datavalues]
ax.bar_label(c, labels=labels, padding = -45, color='white', fontweight='bold', fontsize = 14)
n = 1
else:
n = 0
plt.xlabel('Number of calls',fontsize = 16)
plt.title("[Test duration: " + test_len + "s / Concurrently connected users: " + str(int(virtual_users)*accounts_number) + " / Conversion rate multiplier: " + CV_multiplier + "]", fontsize=15)
plt.suptitle("Total number of calls made to APIs", fontsize=20, y=1)
# Save the plot if there is a "plots" folder
if os.path.isdir("plots"):
plt.savefig("plots/API-TCM-"+now.strftime("%d-%m-%Y-%H:%M:%S")) #TCM = Total Calls Made by [num] Users
print("plots generated under /plots")
plt.show() # Show the second created plot
# Function for the buyer test case
def buyerTestCase(endEvent, result, index, virtual_users, conversion_rate_multiplier):
time.sleep(avg_session_time/(index+1)) # Sleep used to desynchronize requests
random.seed(time.time()) # Generate a new seed for random numbers
# Construct username and password to use for login
username = username_shard + str(index)
password = username_shard + str(index)
# Arrays to save the times taken by individual calls
prod_time_elapsed = []
cart_time_elapsed = []
order_time_elapsed = []
# Variables to count the number of successful calls
prod_succs = 0
cart_succs = 0
order_succs = 0
# Variables to count the number of unsuccessful calls
prod_errors = 0
cart_errors = 0
order_errors = 0
#1) Client login using username and password.
# The accessToken is included in the response.
response = client.initiate_auth(
ClientId=os.getenv('COGNITO_USER_CLIENT_ID'),
AuthFlow='USER_PASSWORD_AUTH',
AuthParameters={
'USERNAME': username,
'PASSWORD': password
}
)
# Loop until the endEvent flag is set (set to True)
while not(endEvent.is_set()):
st = time.time()# Start time of the call
#2) API call to get all products
productsJSON = requests.get(os.getenv('PRODUCTS_API_ENDPOINT'), auth=authProd)
et = time.time() # End time of the call
if productsJSON.status_code != 200: # In case of error
prod_errors += 1 # Count the error
continue # And reset the buyer case
# If successful, save the time/success of the call and process the response contents
prod_time_elapsed.append(int((et - st) * 1000))
prod_succs += 1
products = json.loads(productsJSON.content)
# Generate wait time related to the session duration
session_length = avg_session_time + random.gauss(mu, sigma)
time.sleep(session_length/virtual_users) # Wait for the session length
gen = random.random() # Generate random number
if gen >= conversion_rate * conversion_rate_multiplier: # Conversion rate
#2.5) If the generated number is not within the conversion rate, then simulate a new user
continue
#3) Choose a random product if the generated number is within the conversion rate
chosenProd = random.choice(products)
# Prepare headers and payload for the cart API call
headers = {'Accept': "application/json, text/plain, */*", 'content-type': "application/json; charset=UTF-8"}
payload = {'buyerUsername':username.lower(), 'addedTimestamp': int(time.time() * 1000), 'sellerUsername':chosenProd["sellerUsername"], 'productName':chosenProd["productName"], 'quantity':'1'}
st = time.time()
#4) API call to insert the randomly selected product into the cart
cartResponse = requests.put(os.getenv('CARTS_API_ENDPOINT'), data=json.dumps(payload), headers=headers, auth=authCart)
et = time.time()
if cartResponse.status_code != 200: # In case of error
cart_errors += 1 # Count the error
continue # And reset the buyer case
# If successful, save the call data
cart_time_elapsed.append(int((et - st) * 1000))
cart_succs += 1
# Prepare headers and payload for the order API call
query = {'accessToken':response['AuthenticationResult']['AccessToken']}
payload = {'buyerUsername':username.lower(), 'status': 'drafted', 'sellerUsername':chosenProd["sellerUsername"], 'productName':chosenProd["productName"], 'quantity':'1'}
st = time.time()
#5) API call to generate the order
orderResponse = requests.post(os.getenv('ORDERS_API_ENDPOINT'), params=query, headers=headers, data=json.dumps(payload), auth=authOrder)
et = time.time()
#print("order call: " + str(int((et - st) * 1000))) #DEBUG
if orderResponse.status_code != 200: # In case of error
order_errors += 1 # Count the error
else:
# If successful, save the call data
order_time_elapsed.append(int((et - st) * 1000))
order_succs += 1
# Once the simulation is finished, logout is performed
res = client.global_sign_out(
AccessToken=response['AuthenticationResult']['AccessToken']
)
# The results are saved in the dictionary (only if there is at least one call to the APIs)
result_resp = {}
if prod_succs!= 0 or prod_errors!=0:
if prod_succs != 0:
result_resp.update({"product/get": {
"avg_time_elapsed":int(np.array(prod_time_elapsed).mean()), "succs":prod_succs, "errors":prod_errors
}})
else:
result_resp.update({"product/get": {
"avg_time_elapsed":0, "succs":prod_succs, "errors":prod_errors
}})
if cart_succs!= 0 or cart_errors!=0:
if cart_succs != 0:
result_resp.update({"cart/put": {
"avg_time_elapsed":int(np.array(cart_time_elapsed).mean()), "succs":cart_succs, "errors":cart_errors
}})
else:
result_resp.update({"cart/put": {
"avg_time_elapsed":0, "succs":cart_succs, "errors":cart_errors
}})
if order_succs!= 0 or order_errors!=0:
if order_succs != 0:
result_resp.update({"order/post": {
"avg_time_elapsed":int(np.array(order_time_elapsed).mean()), "succs":order_succs, "errors":order_errors
}})
else:
result_resp.update({"order/post": {
"avg_time_elapsed":0, "succs":order_succs, "errors":order_errors
}})
# Finally, the data related to the calls are placed in the shared memory area between process and Threads
result[index] = result_resp
def main():
# sys.argv[1] -> test length / sys.argv[2] = virtual users per account / sys.argv[3] = conversion rate multiplier
# Check command line parameter properties
if len(sys.argv) == 4:
if (sys.argv[1].isdigit() and sys.argv[2].isdigit() and isfloat(sys.argv[3]) and int(sys.argv[1]) >= 600 and int(sys.argv[2]) >= 1 and float(sys.argv[3]) >= 0):
threads = [None] * accounts_number # Array of threads
results = [None] * accounts_number # Shared memory where threads will save results
endEvent = Event() # Mechanism used for communication between process and Threads. Boolean flag initialized to False
for i in range(0, accounts_number): # Generate a Thread for each account
threads[i] = Thread(target=buyerTestCase, args=(endEvent, results, i, int(sys.argv[2]), float(sys.argv[3]))) # Each Thread is passed the function to simulate the use case along with its arguments
threads[i].start() # Then started
for i in range(1, 11):
time.sleep(int(sys.argv[1])/10) # At every 10% of the test
print("completion percentage: " + str(i) + "0%") # The user is notified
endEvent.set() # Boolean flag set to True to terminate the generated Threads
for i in range(accounts_number):
threads[i].join() # Wait for the Threads to finish
print(results[i])
generatePlots(results, sys.argv[1], sys.argv[2], sys.argv[3]) # Finally, generate the histograms
else: # Error message
print("[test length in seconds] must be a positive integer > 600 / [virtual users per account] must be a positive integer > 1 / [conversion rate multiplier] must be a float >= 0")
else: # Error message
print("parameters error / usage: " + sys.argv[0] + " [test length in seconds] [virtual users per account] [conversion rate multiplier]")
if __name__ == "__main__":
main()