-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
21 lines (16 loc) · 881 Bytes
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
import torch
from torch.utils.data import DataLoader
import torchvision
import torchvision.transforms as transforms
import numpy as np
from PIL import Image
from parameters import *
def get_dataset():
transform = transforms.Compose([transforms.Resize((image_size, image_size)),
# transforms.CenterCrop(image_size),
# transforms.RandomCrop(32, padding=2),
# transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
dataset = torchvision.datasets.ImageFolder(root=dataroot,transform=transform)
return DataLoader(dataset, batch_size, shuffle=True, num_workers=workers, pin_memory=True)