-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
197 lines (157 loc) · 6.55 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions import Normal
import math
LOG_SIG_MAX = 2
LOG_SIG_MIN = -20
epsilon = 1e-6
def normal_entropy(std):
var = std.pow(2)
entropy = 0.5+0.5*torch.log(2 *var*math.pi)
return entropy.sum(1, keepdim=True)
# Initialize Policy weights
def weights_init_(m):
if isinstance(m, nn.Linear):
torch.nn.init.xavier_uniform_(m.weight, gain=1)
torch.nn.init.constant_(m.bias, 0)
class ValueNetwork(nn.Module):
def __init__(self, num_inputs, hidden_dim):
super(ValueNetwork, self).__init__()
self.linear1 = nn.Linear(num_inputs, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.linear3 = nn.Linear(hidden_dim, 1)
self.apply(weights_init_)
def forward(self, state):
x = F.relu(self.linear1(state))
x = F.relu(self.linear2(x))
x = self.linear3(x)
return x
class QNetwork(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_dim):
super(QNetwork, self).__init__()
# Q1 architecture
self.linear1 = nn.Linear(num_inputs + num_actions, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.linear3 = nn.Linear(hidden_dim, 1)
# Q2 architecture
self.linear4 = nn.Linear(num_inputs + num_actions, hidden_dim)
self.linear5 = nn.Linear(hidden_dim, hidden_dim)
self.linear6 = nn.Linear(hidden_dim, 1)
self.apply(weights_init_)
def forward(self, state, action):
xu = torch.cat([state, action], 1)
x1 = F.relu(self.linear1(xu))
x1 = F.relu(self.linear2(x1))
x1 = self.linear3(x1)
x2 = F.relu(self.linear4(xu))
x2 = F.relu(self.linear5(x2))
x2 = self.linear6(x2)
return x1, x2
class GaussianPolicy(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_dim, action_space=None):
super(GaussianPolicy, self).__init__()
self.linear1 = nn.Linear(num_inputs, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.mean_linear = nn.Linear(hidden_dim, num_actions)
self.log_std_linear = nn.Linear(hidden_dim, num_actions)
self.apply(weights_init_)
# action rescaling
if action_space is None:
self.action_scale = torch.tensor(1.)
self.action_bias = torch.tensor(0.)
else:
self.action_scale = torch.FloatTensor(
(action_space.high - action_space.low) / 2.)
self.action_bias = torch.FloatTensor(
(action_space.high + action_space.low) / 2.)
def forward(self, state):
x = F.relu(self.linear1(state))
x = F.relu(self.linear2(x))
mean = self.mean_linear(x)
log_std = self.log_std_linear(x)
log_std = torch.clamp(log_std, min=LOG_SIG_MIN, max=LOG_SIG_MAX)
return mean, log_std
def sample(self, state):
mean, log_std = self.forward(state)
std = log_std.exp()
normal = Normal(mean, std) ##https://pytorch.org/docs/stable/distributions.html#pathwise-derivative
x_t = normal.rsample() # for reparameterization trick (mean + std * N(0,1))
y_t = torch.tanh(x_t)
action = y_t * self.action_scale + self.action_bias
log_prob = normal.log_prob(x_t)
# Enforcing Action Bound
log_prob -= torch.log(self.action_scale * (1 - y_t.pow(2)) + epsilon)
log_prob = log_prob.sum(1, keepdim=True)
mean = torch.tanh(mean) * self.action_scale + self.action_bias
return action, log_prob, mean
'''
mean, log_std = self.forward(state)
std = log_std.exp()
normal = Normal(mean, std)
x_t = normal.sample()
y_t = torch.tanh(x_t)
action = y_t * self.action_scale ## make sure the action is within the range
log_prob = normal.log_prob(x_t)
# Enforcing Action Bound
log_prob -= torch.log(self.action_scale * (1 - y_t.pow(2)) + epsilon)
log_prob = log_prob.sum(1, keepdim=True)
mean = torch.tanh(mean) * self.action_scale
return action, log_prob, mean
'''
def to(self, device):
self.action_scale = self.action_scale.to(device)
self.action_bias = self.action_bias.to(device)
return super(GaussianPolicy, self).to(device)
def entropy(self, state):
_, log_std = self.forward(state)
std = log_std.exp()
var = std.pow(2)
entropy = (0.5+0.5*torch.log(2 *var*math.pi))#/(0.5+0.5*math.log(2*(math.exp(LOG_SIG_MIN)**2)*math.pi))
return entropy.sum()#.item()
def entropy_batch(self, states):
_, log_std = self.forward(states)
std = log_std.exp()
return normal_entropy(std)
def entropy_grad(self, states):
entropy_list = []
for state in states:
_, log_std = self.forward(state)
std = log_std.exp()
var = std.pow(2)
entropy = 0.5 + 0.5 * torch.log(2 * var * math.pi)
entropy_list.append(entropy.sum())
return torch.cat(entropy_list, dim=1)
class DeterministicPolicy(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_dim, action_space=None):
super(DeterministicPolicy, self).__init__()
self.linear1 = nn.Linear(num_inputs, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.mean = nn.Linear(hidden_dim, num_actions)
self.noise = torch.Tensor(num_actions)
self.apply(weights_init_)
# action rescaling
if action_space is None:
self.action_scale = 1.
self.action_bias = 0.
else:
self.action_scale = torch.FloatTensor(
(action_space.high - action_space.low) / 2.)
self.action_bias = torch.FloatTensor(
(action_space.high + action_space.low) / 2.)
def forward(self, state):
x = F.relu(self.linear1(state))
x = F.relu(self.linear2(x))
mean = torch.tanh(self.mean(x)) * self.action_scale + self.action_bias
return mean
def sample(self, state):
mean = self.forward(state)
noise = self.noise.normal_(0., std=0.1)
noise = noise.clamp(-0.25, 0.25)
action = mean + noise
return action, torch.tensor(0.), mean
def to(self, device):
self.action_scale = self.action_scale.to(device)
self.action_bias = self.action_bias.to(device)
self.noise = self.noise.to(device)
return super(DeterministicPolicy, self).to(device)