-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspeech_to_text.py
80 lines (68 loc) · 3.32 KB
/
speech_to_text.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import sounddevice as sd
import soundfile as sf
import numpy as np
import time
import logging
from google.cloud import speech
from constants import SAMPLE_RATE_HERTZ, LANGUAGE_CODE
logger = logging.getLogger(__name__)
class SpeechToText:
def __init__(self, credentials):
self.client = speech.SpeechClient(credentials=credentials)
def record_audio(self, max_duration=10, chunk_duration=0.5, silence_duration=1.5, energy_ratio_threshold=1.5, initialization_chunks=2):
try:
print("Preparing to record audio...")
chunk_size = int(SAMPLE_RATE_HERTZ * chunk_duration)
recording = False
audio_data = []
silence_counter = 0
start_time = time.time()
# Initialize long_term_energy with the energy of a few initial silence chunks
initial_chunks = []
for _ in range(initialization_chunks):
chunk = sd.rec(chunk_size, samplerate=SAMPLE_RATE_HERTZ, channels=1, dtype=np.int16, blocking=True)
chunk = np.squeeze(chunk)
initial_chunks.append(chunk)
long_term_energy = np.sum(np.concatenate(initial_chunks).astype(np.float64) ** 2) / len(np.concatenate(initial_chunks))
while True:
chunk = sd.rec(chunk_size, samplerate=SAMPLE_RATE_HERTZ, channels=1, dtype=np.int16, blocking=True)
chunk = np.squeeze(chunk)
short_term_energy = np.sum(chunk.astype(np.float64) ** 2) / len(chunk)
if short_term_energy > long_term_energy * energy_ratio_threshold:
if not recording:
recording = True
print("Speech detected, start recording...")
start_time = time.time()
audio_data.append(chunk)
silence_counter = 0
elif recording:
silence_counter += chunk_duration
audio_data.append(chunk)
if silence_counter >= silence_duration:
print("Silence detected, stop recording...")
break
if time.time() - start_time >= max_duration:
print("Max duration reached, stop recording...")
break
audio_data = np.concatenate(audio_data, axis=0)
audio_file = "recorded_audio.wav"
sf.write(audio_file, audio_data, SAMPLE_RATE_HERTZ)
return audio_file # Return the path to the recorded audio file
except Exception as e:
logger.error(f"Error in record_audio: {e}")
raise
def transcribe_audio(self, audio_file):
try:
with open(audio_file, "rb") as file:
content = file.read()
audio = speech.RecognitionAudio(content=content)
config = speech.RecognitionConfig(
encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16,
sample_rate_hertz=SAMPLE_RATE_HERTZ,
language_code=LANGUAGE_CODE,
)
response = self.client.recognize(config=config, audio=audio)
return response.results[0].alternatives[0].transcript
except Exception as e:
logger.error(f"Error in transcribe_audio: {e}")
raise