-
Notifications
You must be signed in to change notification settings - Fork 5
/
dataset_t2i_iterable.py
408 lines (375 loc) · 19.1 KB
/
dataset_t2i_iterable.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
import glob
import os
import pickle
import random
import re
import time
from functools import partial
from os import path as osp
from typing import List, Tuple, Union
import json
import itertools
import concurrent.futures
from multiprocessing import cpu_count
import tqdm
import numpy as np
import torch
import pandas as pd
from PIL import Image as PImage
from torch.nn import functional as F
from torch.utils.data import Dataset
from torchvision.transforms.functional import to_tensor
from torch.utils.data import IterableDataset, DataLoader
import torch.distributed as tdist
from infinity.utils.dynamic_resolution import dynamic_resolution_h_w, get_h_div_w_template2indices, h_div_w_templates
from infinity.utils.large_file_util import get_part_jsonls, split_large_txt_files
def center_crop_to_tensor_pm1(pil_image, mid_reso: int, final_reso: int):
"""
Center cropping implementation from ADM.
https://github.com/openai/guided-diffusion/blob/8fb3ad9197f16bbc40620447b2742e13458d2831/guided_diffusion/image_datasets.py#L126
Then to_tensor and normalize to [-1, 1]
"""
while min(*pil_image.size) >= 2 * mid_reso:
pil_image = pil_image.resize(
tuple(x // 2 for x in pil_image.size), resample=PImage.BOX
)
if mid_reso == final_reso == pil_image.size[0] == pil_image.size[1]:
im = to_tensor(pil_image)
else:
# resize the shorter edge to mid_reso
scale = mid_reso / min(*pil_image.size)
pil_image = pil_image.resize(
tuple(round(x * scale) for x in pil_image.size), resample=PImage.LANCZOS
)
# crop the center out
arr = np.array(pil_image)
crop_y = (arr.shape[0] - final_reso) // 2
crop_x = (arr.shape[1] - final_reso) // 2
# return PImage.fromarray(arr[crop_y: crop_y + final_reso, crop_x: crop_x + final_reso])
im = to_tensor(arr[crop_y: crop_y + final_reso, crop_x: crop_x + final_reso])
return im.add(im).add_(-1)
def transform(pil_img, tgt_h, tgt_w):
width, height = pil_img.size
if width / height <= tgt_w / tgt_h:
resized_width = tgt_w
resized_height = int(tgt_w / (width / height))
else:
resized_height = tgt_h
resized_width = int((width / height) * tgt_h)
pil_img = pil_img.resize((resized_width, resized_height), resample=PImage.LANCZOS)
# crop the center out
arr = np.array(pil_img)
crop_y = (arr.shape[0] - tgt_h) // 2
crop_x = (arr.shape[1] - tgt_w) // 2
im = to_tensor(arr[crop_y: crop_y + tgt_h, crop_x: crop_x + tgt_w])
# print(f'im size {im.shape}')
return im.add(im).add_(-1)
def process_short_text(short_text):
if '--' in short_text:
processed_text = short_text.split('--')[0]
if processed_text:
short_text = processed_text
return short_text
class T2IIterableDataset(IterableDataset):
def __init__(
self,
meta_folder: str,
max_caption_len=512,
short_prob=0.2,
load_vae_instead_of_image=False,
buffersize: int = 10000,
seed: int = 0,
pn: str = '',
online_t5: bool = True,
batch_size: int = 2,
num_replicas: int = 1, # 1,
rank: int = 0, # 0
dataloader_workers: int = 2,
dynamic_resolution_across_gpus: bool = True,
enable_dynamic_length_prompt: bool = True,
**kwargs,
):
self.meta_folder = meta_folder
self.pn = pn
self.online_t5 = online_t5
self.buffer_size = buffersize
self.num_replicas = num_replicas
self.rank = rank
self.worker_id = 0
self.global_worker_id = 0
self.dataloader_workers = max(1, dataloader_workers)
self.max_caption_len = max_caption_len
self.short_prob = short_prob
self.load_vae_instead_of_image = load_vae_instead_of_image # set to false
self.dynamic_resolution_across_gpus = dynamic_resolution_across_gpus
self.enable_dynamic_length_prompt = enable_dynamic_length_prompt
self.batch_size = batch_size
print(f'self.dynamic_resolution_across_gpus: {self.dynamic_resolution_across_gpus}')
print(f'self.enable_dynamic_length_prompt: {self.enable_dynamic_length_prompt}')
print(f'self.buffer_size: {self.buffer_size}')
self.shuffle = True
self.global_workers = self.num_replicas * self.dataloader_workers
self.h_div_w_template2generator, self.samples_div_gpus_workers_batchsize_2batches, total_samples = self.set_h_div_w_template2generator()
self.split_meta_files()
self.seed = seed
self.epoch_worker_generator = None
self.epoch_global_worker_generator = None
self.set_epoch(0)
print(f'num_replicas: {num_replicas}, rank: {rank}, dataloader_workers: {dataloader_workers}, seed:{seed}, samples_div_gpus_workers_batchsize_2batches: {self.samples_div_gpus_workers_batchsize_2batches}')
def set_h_div_w_template2generator(self,):
samples_div_gpus_workers_batchsize_2batches = 0
h_div_w_template2generator = {}
total_samples = 0
for filepath in sorted(glob.glob(osp.join(self.meta_folder, '*.jsonl'))):
filename = osp.basename(filepath)
h_div_w_template, num_of_samples = osp.splitext(filename)[0].split('_')
total_samples += int(num_of_samples)
for filepath in sorted(glob.glob(osp.join(self.meta_folder, '*.jsonl'))):
filename = osp.basename(filepath)
h_div_w_template, num_of_samples = osp.splitext(filename)[0].split('_')
num_of_samples = int(num_of_samples)
if num_of_samples < self.global_workers:
print(f'{filepath} has too few examples ({num_of_samples}, proportion: {num_of_samples/total_samples*100:.1f}%), < global workers ({self.global_workers})! Skip h_div_w_template: {h_div_w_template}')
continue
print(f'{filepath} has sufficient examples ({num_of_samples}), proportion: {num_of_samples/total_samples*100:.1f}%, > global workers ({self.global_workers})! Preserve h_div_w_template: {h_div_w_template}')
num_of_batches = max(1, int((num_of_samples // self.global_workers // self.batch_size)))
h_div_w_template2generator[h_div_w_template] = {
'filepath': filepath,
'num_of_samples': num_of_samples,
'num_of_batches': num_of_batches,
}
samples_div_gpus_workers_batchsize_2batches += num_of_batches
return h_div_w_template2generator, samples_div_gpus_workers_batchsize_2batches, total_samples
def split_meta_files(self, ):
print('[data preprocess] split_meta_files')
def split_and_sleep(generator_info):
missing, chunk_id2save_files = get_part_jsonls(generator_info['filepath'], generator_info['num_of_samples'], parts=self.num_replicas)
if missing:
tdist.barrier()
if self.rank == 0:
split_large_txt_files(generator_info['filepath'], chunk_id2save_files)
else:
sleep_time = int(generator_info['num_of_samples'] / 30000000 * 10)
print(f'[data preprocess] sleep {sleep_time} minutes awaiting rank0 split_meta_files...')
time.sleep(sleep_time*60)
tdist.barrier()
generator_info['part_filepaths'] = sorted(list(chunk_id2save_files.values()))
return generator_info
with concurrent.futures.ThreadPoolExecutor(max_workers=cpu_count()) as executor:
futures = {executor.submit(split_and_sleep, generator_info): h_div_w_template for h_div_w_template, generator_info in self.h_div_w_template2generator.items()}
for future in concurrent.futures.as_completed(futures):
h_div_w_template = futures[future]
try:
self.h_div_w_template2generator[h_div_w_template] = future.result()
except Exception as exc:
print(f'[data preprocess] h_div_w_template {h_div_w_template} generated an exception: {exc}')
print('[data preprocess] split_meta_files done')
def set_global_worker_id(self):
worker_info = torch.utils.data.get_worker_info()
if worker_info:
worker_total_num = worker_info.num_workers
worker_id = worker_info.id
else:
worker_id = 0
worker_total_num = 1
assert worker_total_num == self.dataloader_workers, print(worker_total_num, self.dataloader_workers)
self.worker_id = worker_id
self.global_worker_id = self.rank * self.dataloader_workers + worker_id
# print(f'Set worker_id to {self.worker_id}, global_worker_id to {self.global_worker_id}')
def set_epoch(self, epoch):
self.epoch = epoch
self.set_generator()
def set_generator(self, ):
self.epoch_worker_generator = np.random.default_rng(self.seed + self.epoch + self.worker_id)
self.epoch_global_worker_generator = np.random.default_rng(self.seed + self.epoch + self.global_worker_id)
def get_h_div_w_template_2_unlearned_batches(self,):
h_div_w_template_2_unlearned_batches = {}
total_unlearned_batches = 0
for h_div_w_template, generator_info in self.h_div_w_template2generator.items():
h_div_w_template_2_unlearned_batches[h_div_w_template] = generator_info['num_of_batches']
total_unlearned_batches += generator_info['num_of_batches']
self.total_unlearned_batches = total_unlearned_batches
self.h_div_w_template_2_unlearned_batches = h_div_w_template_2_unlearned_batches
assert self.total_unlearned_batches == self.samples_div_gpus_workers_batchsize_2batches
def _next_h_div_w_template(self,):
while True:
self.get_h_div_w_template_2_unlearned_batches()
while self.total_unlearned_batches > 0:
if self.dynamic_resolution_across_gpus:
i = self.epoch_global_worker_generator.integers(0, self.total_unlearned_batches)
else:
i = self.epoch_worker_generator.integers(0, self.total_unlearned_batches)
self.total_unlearned_batches -= 1
for h_div_w_template, unlearned_batches in self.h_div_w_template_2_unlearned_batches.items():
if i < unlearned_batches:
yield h_div_w_template
self.h_div_w_template_2_unlearned_batches[h_div_w_template] -= 1
break
else:
i -= unlearned_batches
def __iter__(self):
self.set_global_worker_id()
self.set_generator()
for h_div_w_template, generator_info in self.h_div_w_template2generator.items():
proportion = generator_info['num_of_batches'] / self.samples_div_gpus_workers_batchsize_2batches
h_div_w_buffer_size = int(self.buffer_size * proportion)
h_div_w_buffer_size = min(max(1, h_div_w_buffer_size), generator_info['num_of_batches'] * self.batch_size)
if 'mem_buffer' in generator_info:
del generator_info['mem_buffer']
mem_buffer = []
for _ in range(h_div_w_buffer_size):
mem_buffer.append(self.infinite_next(generator_info))
generator_info['mem_buffer'] = mem_buffer
next_h_div_w_template_iter = self._next_h_div_w_template()
# while True:
for _ in range(self.samples_div_gpus_workers_batchsize_2batches):
batch_data = []
h_div_w_template = next(next_h_div_w_template_iter)
while len(batch_data) < self.batch_size:
try:
generator_info = self.h_div_w_template2generator[h_div_w_template]
mem_buffer = generator_info['mem_buffer']
i = self.epoch_global_worker_generator.integers(0, len(mem_buffer))
data_item = mem_buffer[i]
mem_buffer[i] = self.infinite_next(generator_info)
ret, model_input = self.prepare_model_input(json.loads(data_item)) # data_item[0] is row number of panda dataframe
if ret:
c_, h_, w_ = model_input[1].shape[-3:]
if c_ != 3 or np.abs(h_/w_-float(h_div_w_template)) > 0.01:
print(f'Croupt data item: {data_item}')
else:
batch_data.append(model_input)
del data_item
except Exception as e:
print(e)
captions = [item[0] for item in batch_data]
images = torch.stack([item[1] for item in batch_data])
yield (images, captions)
del batch_data
del images
del captions
def infinite_next(self, generator_info):
try:
if 'sub_iterator' not in generator_info:
raise StopIteration
return next(generator_info['sub_iterator'])
except StopIteration as e:
if 'record_iterator' in generator_info:
generator_info['record_iterator'].close()
if 'sub_iterator' in generator_info:
del generator_info['sub_iterator']
part_filepath = generator_info['part_filepaths'][self.rank]
generator_info['record_iterator'] = open(part_filepath, 'r')
part_num_of_samples = int(osp.splitext(osp.basename(part_filepath))[0].split('_')[-1])
# print(f'part_filepath: {part_filepath}, rank: {self.rank}, worker_id:{self.worker_id}, part_num_of_samples: {part_num_of_samples}, dataloader_workers: {self.dataloader_workers}')
generator_info['sub_iterator'] = itertools.islice(generator_info['record_iterator'], self.worker_id, part_num_of_samples, self.dataloader_workers)
return next(generator_info['sub_iterator'])
def __len__(self):
return self.samples_div_gpus_workers_batchsize_2batches * self.dataloader_workers
def total_samples(self):
return self.samples_div_gpus_workers_batchsize_2batches * self.dataloader_workers * self.num_replicas * self.batch_size
def get_text_input(self, long_text_input, short_text_input, long_text_type):
random_value = self.epoch_global_worker_generator.random()
if self.enable_dynamic_length_prompt and long_text_type != 'user_prompt':
long_text_elems = [item for item in long_text_input.split('.') if item]
if len(long_text_elems):
first_sentence_words = [item for item in long_text_elems[0].split(' ') if item]
else:
first_sentence_words = 0
if len(first_sentence_words) >= 15:
num_sentence4short_text = 1
else:
num_sentence4short_text = 2
if not short_text_input:
short_text_input = '.'.join(long_text_elems[:num_sentence4short_text])
if random_value < self.short_prob:
return short_text_input
if len(long_text_elems) <= num_sentence4short_text:
return long_text_input
select_sentence_num = self.epoch_global_worker_generator.integers(num_sentence4short_text+1, len(long_text_elems)+1)
return '.'.join(long_text_elems[:select_sentence_num])
else:
if short_text_input and random_value < self.short_prob:
return short_text_input
return long_text_input
def prepare_model_input(self, data_item) -> Tuple:
img_path, h_div_w = data_item['image_path'], data_item['h_div_w']
short_text_input, long_text_input = data_item['text'], data_item['long_caption']
long_text_type = data_item.get('long_caption_type', 'user_prompt')
text_input = self.get_text_input(long_text_input, short_text_input, long_text_type)
text_input = process_short_text(text_input)
h_div_w_template = h_div_w_templates[np.argmin(np.abs(h_div_w - h_div_w_templates))]
try:
if self.load_vae_instead_of_image:
img_B3HW = None
vae_path = self.get_vae_path(img_path)
with open(vae_path, 'rb') as f:
gt_ms_idx_Bl = pickle.load(f)
else:
gt_ms_idx_Bl = None
with open(img_path, 'rb') as f:
img: PImage.Image = PImage.open(f)
img = img.convert('RGB')
tgt_h, tgt_w = dynamic_resolution_h_w[h_div_w_template][self.pn]['pixel']
img_B3HW = transform(img, tgt_h, tgt_w)
if not self.online_t5:
short_t5_path, long_t5_path = self.get_t5_path(img_path)
if self.epoch_global_worker_generator.random() <= self.short_prob:
t5_path = short_t5_path
else:
t5_path = long_t5_path
t5_meta = np.load(t5_path)
text_input = t5_meta['t5_feat'][:self.max_caption_len] # L x C
except Exception as e:
print(f'input error: {e}, skip to another index')
return False, None
if self.load_vae_instead_of_image:
return True, (text_input, *gt_ms_idx_Bl)
else:
return True, (text_input, img_B3HW)
@staticmethod
def collate_function(batch, online_t5: bool = False) -> None:
pass
if __name__ == '__main__':
# torchrun --nnodes=1 --nproc-per-node=2 --master_addr=$METIS_WORKER_0_HOST --master_port=$METIS_WORKER_0_PORT dataset/dataset_t2i_iterable.py
tdist.init_process_group(backend='nccl')
batch_size = 2
dataloader_workers = 12
dataset = T2IIterableDataset(
args=None,
meta_folder='data/train_splits/xxx_pretrain/jsonl_files_filter_duplicate_captions',
data_load_reso=None,
max_caption_len=512,
short_prob=1.0,
load_vae_instead_of_image=False,
buffersize=100000,
seed=0,
online_t5=True,
pn='0.06M',
batch_size=batch_size,
num_replicas=8, # tdist.get_world_size(),
rank=tdist.get_rank(), # 0
dataloader_workers=dataloader_workers,
)
dataloader = DataLoader(dataset, batch_size=None, num_workers=dataloader_workers)
print(f'len(dataloader): {len(dataloader)}, len(dataset): {len(dataset)}, total_samples: {dataset.total_samples()}')
t1 = time.time()
h_div_w2samples = {}
for ep in range(4):
dataloader.dataset.set_epoch(ep)
pbar = tqdm.tqdm(total=len(dataloader))
for i, data in enumerate(iter(dataloader)):
pbar.update(1)
t2 = time.time()
h_div_w = data[0].shape[-2] / data[0].shape[-1]
h_div_w = f'{h_div_w:.3f}'
if h_div_w not in h_div_w2samples:
h_div_w2samples[h_div_w] = 0
h_div_w2samples[h_div_w] += 1
if (i+1) % 100 == 0:
total_samples = np.sum(list(h_div_w2samples.values()))
print()
for h_div_w, num in sorted(h_div_w2samples.items()):
print(f'h_div_w: {h_div_w}, samples: {num}, proportion: {num/total_samples*100:.1f}%')
print()
t1 = time.time()