|
35 | 35 | function holstein_interaction_energy_integrand(τ, v, w, α, ω, β; dims = 3)
|
36 | 36 | coupling = holstein_coupling(1, α, ω; dims = dims)
|
37 | 37 | propagator = polaron_propagator(τ, v, w, ω, β)
|
38 |
| - phonon_propagator(τ, ω, β) * (coupling * erf(π * sqrt(propagator / 2)) / sqrt(2π * propagator))^dims |
| 38 | + phonon_propagator(τ, ω, β) * (coupling * erf(π * sqrt(propagator * dims)) / sqrt(2π * propagator))^dims |
39 | 39 | end
|
40 | 40 |
|
41 | 41 | """
|
|
44 | 44 | function holstein_interaction_energy_integrand(τ, v, w, α, ω; dims = 3)
|
45 | 45 | coupling = holstein_coupling(1, α, ω; dims = dims)
|
46 | 46 | propagator = polaron_propagator(τ, v, w, ω)
|
47 |
| - phonon_propagator(τ, ω) * (coupling * erf(π * sqrt(propagator / 2)) / sqrt(2π * propagator))^dims |
| 47 | + phonon_propagator(τ, ω) * (coupling * erf(π * sqrt(propagator * dims / ω)) / sqrt(2π * propagator))^dims |
48 | 48 | end
|
49 | 49 |
|
50 | 50 | """
|
|
67 | 67 | Total free energy for the Holstein model. Here the k-space integral is evaluated analytically.
|
68 | 68 | """
|
69 | 69 | function holstein_energy(v, w, α, ωβ...; dims = 3)
|
70 |
| - kinetic_energy = -2 * dims - electron_energy(v, w, ωβ...; dims = dims) |
71 |
| - potential_energy = -holstein_interaction_energy(v, w, α, ωβ...; dims = dims) |
72 |
| - return kinetic_energy + potential_energy, kinetic_energy, potential_energy |
| 70 | + kinetic_energy = -2 * dims - electron_energy(v, w, ωβ...; dims = dims) / dims |
| 71 | + potential_energy = -holstein_interaction_energy(v, w, α, ωβ...; dims = dims) / 2.0^dims |
| 72 | + return (kinetic_energy + potential_energy), kinetic_energy, potential_energy |
73 | 73 | end
|
74 | 74 |
|
75 | 75 | """
|
@@ -108,15 +108,15 @@ end
|
108 | 108 | General memory function for a given structure factor with frequency dependence.
|
109 | 109 | """
|
110 | 110 | function general_memory_function(Ω, structure_factor; limits = [0, Inf])
|
111 |
| - integral, _ = quadgk(t -> (1 - exp(im * Ω * t)) / Ω * imag(structure_factor(t)), limits[1], limits[2], rtol=1e-4) |
| 111 | + integral, _ = quadgk(t -> (1 - exp(im * Ω * t)) / Ω * imag(structure_factor(t)), limits[1], limits[2]) |
112 | 112 | return integral
|
113 | 113 | end
|
114 | 114 |
|
115 | 115 | """
|
116 | 116 | General memory function for a given structure factor in the DC limit.
|
117 | 117 | """
|
118 | 118 | function general_memory_function(structure_factor; limits = [0, Inf])
|
119 |
| - integral, _ = quadgk(t -> -im * t * imag(structure_factor(t)), limits[1], limits[2], rtol=1e-4) |
| 119 | + integral, _ = quadgk(t -> -im * t * imag(structure_factor(t)), limits[1], limits[2]) |
120 | 120 | return integral
|
121 | 121 | end
|
122 | 122 |
|
|
0 commit comments