-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathscripts.py
486 lines (378 loc) · 14.7 KB
/
scripts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
import numpy as np
import pandas as pd
import math
from scipy.spatial.distance import pdist, squareform
import scipy.integrate as spint
import pickle
def convert_gene_dict(gene_dict, name_convention='g'):
converted_gene_dict = {}
for key, sub_dict in gene_dict.items():
if name_convention == 'a':
new_key = str(sub_dict['Accession'])
elif name_convention == 'g':
new_key = str(sub_dict['Name'])
elif name_convention == 'name':
new_key = str(key)
key = str(sub_dict['Name'])
elif name_convention == 'accession':
new_key = str(key)
key = str(sub_dict['Accession'])
elif name_convention == 'na':
new_key = sub_dict['Name']
key = str(sub_dict['Accession'])
elif name_convention == 'an':
new_key = sub_dict['Accession']
key = str(sub_dict['Name'])
elif name_convention == 'ga':
new_key = key
key = str(sub_dict['Accession'])
converted_gene_dict[str(new_key)] = str(key)
return converted_gene_dict
def create_tissue_dict(address, name_convention='accession', relevant_prots=None):
gene_dict_raw = load_object('./data/Biogrid/gene_dict_Homo_sapiens')
gene_dict = convert_gene_dict(gene_dict_raw, name_convention=name_convention)
del gene_dict_raw
tissue_table = pd.read_table(address, header=0, names=['Gene1', 'Gene2', 'Value'])
gene1s = tissue_table['Gene1']
gene2s = tissue_table['Gene2']
values = tissue_table['Value']
tissue_dict = {}
for i in range(len(gene1s)):
gene1 = str(gene1s[i])
gene2 = str(gene2s[i])
val = values[i]
if gene1 == gene2:
continue
if gene1 not in gene_dict or gene2 not in gene_dict:
continue
gene1 = gene_dict[gene1]
gene2 = gene_dict[gene2]
if gene1 == '-' or gene2 == '-':
continue
if (gene1, gene2) in tissue_dict or (gene2, gene1) in tissue_dict:
continue
if relevant_prots != None:
if gene1 not in relevant_prots or gene2 not in relevant_prots:
continue
tissue_dict[gene1, gene2] = val
return tissue_dict
def load_pfam_tsv(address):
pfam = pd.read_table(address, low_memory=False, skiprows=2)
column_headers = list(pfam.columns)
fixed_column_headers = column_headers[0].split('> <')
for i in range(len(fixed_column_headers)):
fixed_column_headers[i] = fixed_column_headers[i].replace('#', '').replace('<', '').replace('>', '')
pfam = pd.read_table(address, low_memory=False, skiprows=3)
first_row = list(pfam.columns)
pfam.columns = fixed_column_headers
pfam.loc[len(pfam.index)] = first_row
len(fixed_column_headers)
return pfam
def process_pfam(address, max_evalue=None, loc_info=False):
pfam = load_pfam_tsv(address)
seq_ids = list(pfam['seq id'])
hmm_accs = list(pfam['hmm acc'])
hmm_names = list(pfam['hmm name'])
types = list(pfam['type'])
clans = list(pfam['clan'])
evalues = list(pfam['E-value'])
if loc_info == True:
envelope_starts = list(pfam['envelope start'])
envelope_ends = list(pfam['envelope end'])
del pfam
pfam_dict = {}
for i in range(len(seq_ids)):
seq_id = seq_ids[i]
hmm_acc = hmm_accs[i]
hmm_name = hmm_names[i]
type_ = types[i]
clan = clans[i]
evalue = evalues[i]
if loc_info == True:
try:
start = envelope_starts[i]
end = envelope_ends[i]
except:
start = -1
end = -1
if max_evalue:
if evalue > max_evalue:
continue
if seq_id not in pfam_dict:
pfam_dict[seq_id] = {}
if type_ not in pfam_dict[seq_id]:
pfam_dict[seq_id][type_] = []
if loc_info == True:
pfam_dict[seq_id][type_].append((hmm_acc, hmm_name, clan, start, end))
else:
pfam_dict[seq_id][type_].append((hmm_acc, hmm_name, clan))
return pfam_dict
def build_relevent_pfam_dict(pfam_addresses, loc_info=False):
pfam_dicts = []
for address in pfam_addresses:
pfam_dict = process_pfam(address, loc_info=loc_info)
pfam_dicts.append(pfam_dict)
relevent_pfam_dict = {}
for pfam in pfam_dicts:
for gene in list(pfam.keys()):
relevent_pfam_dict[gene] = pfam[gene]
del pfam_dicts
return relevent_pfam_dict
def create_domains_families_clans_lists(gene_pfam):
gene_clans = []
domains = []
families = []
clans = []
if 'Domain' in gene_pfam:
gene_domains_list = gene_pfam['Domain']
gene_domains = [value[0] for value in gene_domains_list]
for j, domain in enumerate(gene_domains):
domains.append(domain)
gene_clans = gene_clans + \
list(set([value[2] for value in gene_domains_list if value[2] != 'No_clan']))
if 'Family' in gene_pfam:
gene_families_list = gene_pfam['Family']
gene_families = [value[0] for value in gene_families_list]
for j, family in enumerate(gene_families):
families.append(family)
gene_clans = gene_clans + \
list(set([value[2] for value in gene_families_list if value[2] != 'No_clan']))
for j, clan in enumerate(gene_clans):
clans.append(clan)
return domains, families, clans
def save_object(obj, save_name):
f = open(save_name + ".pkl", "wb")
pickle.dump(obj, f, -1)
f.close()
def load_object(file_name):
f = open(file_name + ".pkl", "rb")
obj = pickle.load(f)
f.close()
return obj
def derivative_points(x, y, normalize=False):
yd = []
xd = []
for i in range(len(x) - 1):
slope = (y[i + 1] - y[i]) / (x[i + 1] - x[i])
yd.append(slope)
xd.append(i)
if normalize:
yd = yd - np.min(yd)
yd = yd / np.max(yd)
xd = np.array(xd) / len(xd)
return xd, yd
def calculate_weighted_distance(x, y1, y2, start_weight=0.5, weight_decay=0.5, return_derivative_list=False,
normalize=False):
weight_list = [start_weight]
distance_list = [calculate_parameter_euclidean_distance(y1, y2)]
y1_list = [y1]
y2_list = [y2]
x1 = x
x2 = x
while len(x1) > 2:
x1, y1 = derivative_points(x1, y1, normalize=normalize)
x2, y2 = derivative_points(x2, y2, normalize=normalize)
y1_list.append(y1)
y2_list.append(y2)
distance_list.append(calculate_parameter_euclidean_distance(y1, y2))
weight_list.append(weight_list[-1] * weight_decay)
distance = 0
for i in range(len(distance_list)):
distance = distance + distance_list[i] * weight_list[i]
if return_derivative_list:
return distance, y1_list, y2_list
else:
return distance
def calculate_parameter_euclidean_distance(paramters_1, parameters_2):
euclidean_distance = 0
for i, p1 in enumerate(paramters_1):
distance = (paramters_1[i] - parameters_2[i]) ** 2
euclidean_distance = euclidean_distance + distance
euclidean_distance = math.sqrt(euclidean_distance)
return euclidean_distance
def intergrate_curve(x, y, normalize=True):
y_int = []
for i in range(len(x) - 1):
x_i = x[i:i + 2]
y_i = y[i:i + 2]
integral = spint.trapz(y_i, x=x_i)
y_int.append(integral)
if normalize:
y_int = y_int - np.min(y_int)
y_int = y_int / np.max(y_int)
return x[0:-1], y_int
def calculate_integral_distance(x, y1, y2, start_weight=0.5, weight_decay=0.5, return_integral_list=False,
normalize=True):
weight_list = [start_weight]
distance_list = [calculate_parameter_euclidean_distance(y1, y2)]
y1_list = [y1]
y2_list = [y2]
x1 = x
x2 = x
while len(x1) > 2:
x1, y1 = intergrate_curve(x1, y1, normalize=normalize)
x2, y2 = intergrate_curve(x2, y2, normalize=normalize)
y1_list.append(y1)
y2_list.append(y2)
distance_list.append(calculate_parameter_euclidean_distance(y1, y2))
weight_list.append(weight_list[-1] * weight_decay)
distance = 0
for i in range(len(distance_list)):
distance = distance + distance_list[i] * weight_list[i]
if return_integral_list:
return distance, y1_list, y2_list
else:
return distance
def create_prot_mean_std_dict(curve_dict, metric='euclidean', ex_distance=False,
curve_points=[36.9, 40.2, 43.9, 46.6, 48.6, 52.7, 55.3, 58.5, 61.2, 64]):
keys = curve_dict.keys()
dataframe = pd.DataFrame(index=keys, columns=curve_points)
curve_points_len = len(curve_points)
for key in keys:
values = curve_dict[key]
if len(values) > curve_points_len:
values = values[0:curve_points_len]
while len(values) < curve_points_len:
values = np.append(values, values[-1])
dataframe.loc[key] = np.reshape(values, (curve_points_len))
dataframe = dataframe.fillna(0)
distances = pdist(dataframe.to_numpy(), metric=metric)
dist_matrix = squareform(distances)
distance_dataframe = pd.DataFrame(dist_matrix, index=keys, columns=keys)
dist = distance_dataframe.to_numpy()
keys = distance_dataframe.keys()
dist_dict = {}
for i in range(len(dist)):
for j in range(len(dist)):
if i == j:
continue
if (keys[i], keys[j]) in dist_dict:
continue
elif (keys[j], keys[i]) in dist_dict:
continue
if ex_distance:
dist_dict[keys[i], keys[j]] = 1 / (dist[i][j] + 1)
else:
dist_dict[keys[i], keys[j]] = dist[i][j]
prots = list(distance_dataframe.keys())
prot_mean_std_dict = {}
for prot in prots:
val_list = list(distance_dataframe[prot])
prot_mean_std_dict[prot] = (np.mean(val_list), np.std(val_list))
del dist, keys, distance_dataframe
return prot_mean_std_dict, dist_dict
# This function saves Tapioca predictions as a tsv
def network_dict_to_tsv_file(network_dict, savename='./data/test', n=2):
f = open(savename + '.tsv', "w")
for key, value in network_dict.items():
line = ''
skip_flag = False
for i in range(n):
gene = key[i]
if gene == None:
skip_flag = True
break
line = line + '\t' + gene
if skip_flag:
continue
line = line +'\t'+ str(value) + '\n'
f.write(line)
f.close()
# This function reads Tapioca predictions
def tsv_to_dict(address,n=2):
out_dict = {}
with open(address, 'rt') as f:
for line in f:
try:
gene_list = []
if line[0] == '\t':
line=line[1:]
value = float(line.split('\t')[n].replace('\n', '').replace('[', '').replace(']', ''))
for i in range(n):
gene_list.append(line.split('\t')[i])
out_dict[tuple(gene_list)] = float(value)
except:
continue
return out_dict
def curve_dict_from_pd_master_curve_dict(master_curve_dict, replicate, condition=None, curve_points_len=10):
curve_dict = {}
for gene, rep_dict in master_curve_dict.items():
if replicate in rep_dict:
if condition == None:
curve_point_dict = rep_dict[replicate]
else:
if condition in rep_dict[replicate]:
curve_point_dict = rep_dict[replicate][condition]
else:
continue
if len(curve_point_dict) > curve_points_len:
curve = np.reshape(list(curve_point_dict.values())[0:-1], (curve_points_len, 1))
else:
curve = np.reshape(list(curve_point_dict.values()), (curve_points_len, 1))
for i,val in enumerate(curve):
if np.isnan(val):
if i == 0:
curve[i] = 1
elif i == len(curve)-1:
curve[i] = curve[i-1]*.9
else:
curve[i] = (curve[i - 1] + curve[i + 1]) / 2
for i in range(len(curve)):
if np.isnan(curve[i][0]):
if i ==0:
curve[i][0] = 1
elif i == len(curve)-1:
curve[i][0] = 0
else:
curve_i_plus_1 = curve[i+1]
curve_i_min_1 = curve[i-1]
if np.isnan(curve_i_plus_1) and i+2 < len(curve):
curve_i_plus_1 = curve[i+2]
if np.isnan(curve_i_plus_1) and i-2 > -1:
curve_i_min_1 = curve[i - 2]
curve[i][0] = (curve_i_min_1+curve_i_plus_1)/2
if np.isnan(curve[i][0]):
curve = None
break
if type(curve) != type(None):
if np.isnan(curve).sum() or np.isinf(curve).sum():
continue
curve_dict[gene] = curve
return curve_dict
def create_master_curve_dict(address,
curve_points=['36.9', '40.2', '43.9', '46.6', '48.6', '52.7','55.3', '58.5', '61.2', '64.0']):
master_table = pd.read_csv(address)
master_curve_dict = {}
for i in range(len(master_table)):
row = master_table.iloc[i]
condition = str(row['condition'])
rep = str(row['replicate'])
acc = row['accession']
temp_list = []
for i in range(len(curve_points)):
temp_list.append(row[curve_points[i]])
if acc not in master_curve_dict:
master_curve_dict[acc] = {}
if rep not in master_curve_dict[acc]:
master_curve_dict[acc][rep] = {}
if condition not in master_curve_dict[acc][rep]:
master_curve_dict[acc][rep][condition] = {}
for i in range(len(curve_points)):
master_curve_dict[acc][rep][condition][curve_points[i]] = temp_list[i]
return master_curve_dict
def get_curve_points(address):
table = pd.read_csv(address)
columns = list(table.columns)
curve_points = []
for val in columns:
if val.replace('.','',1).isdigit():
curve_points.append(val)
return curve_points
def get_conditions(address):
table = pd.read_csv(address)
conditions = [str(thing) for thing in list(set(table['condition']))]
return conditions
def get_replicates(address):
table = pd.read_csv(address)
replicates = [str(thing) for thing in list(set(table['replicate']))]
return replicates