Skip to content

Commit 1f24913

Browse files
author
Gabriel Fernández Fernández
committed
Add DOI badge
1 parent f9d4001 commit 1f24913

File tree

5 files changed

+31
-22
lines changed

5 files changed

+31
-22
lines changed

README.md

Lines changed: 8 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -4,6 +4,14 @@
44

55
![Interpretable autoregressive β-VAE architecture.](fig1.png)
66

7+
<div>
8+
9+
[![](https://zenodo.org/badge/667817128.svg)](https://zenodo.org/doi/10.5281/zenodo.11572993)
10+
11+
DOI
12+
13+
</div>
14+
715
SPIVAE is a machine learning method to study stochastic processes. It
816
tries to learn the probability distribution of input trajectories and
917
permits us to interpret its functioning and generate new trajectories
@@ -50,13 +58,3 @@ If you use this library, please give us credit.
5058
{Data Analysis, Statistics and Probability (physics.data-an)},
5159
Quantitative Methods (q-bio.QM)}
5260
}
53-
54-
@misc{fernandez2023spivae,
55-
title = {{{SPIVAE}}},
56-
author = {{Fern{\'a}ndez-Fern{\'a}ndez}, Gabriel},
57-
year = {2023},
58-
month = jul,
59-
url = {https://github.com/GabrielFernandezFernandez/SPIVAE},
60-
urldate = {2023-07-21},
61-
copyright = {Apache-2.0}
62-
}

SPIVAE/utils.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -28,7 +28,7 @@ def __call__(self, pred, target,):
2828
log_likelihood = mix_gaussian_loss(y_hat, target, reduction=self.reduction)
2929
else:
3030
log_likelihood = mix_gaussian_loss(y_hat, target[:,self.RF:], reduction=self.reduction)
31-
31+
3232
if self.reduction=='none':
3333
kl = kl_divergence(mu, logvar, reduction='none') if self.c else 0
3434
return log_likelihood, self.beta, kl

nbs/index.ipynb

Lines changed: 7 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -15,6 +15,13 @@
1515
"![Interpretable autoregressive β-VAE architecture.](fig1.png)"
1616
]
1717
},
18+
{
19+
"cell_type": "markdown",
20+
"metadata": {},
21+
"source": [
22+
"[![DOI](https://zenodo.org/badge/667817128.svg)](https://zenodo.org/doi/10.5281/zenodo.11572993)"
23+
]
24+
},
1825
{
1926
"cell_type": "markdown",
2027
"metadata": {},
@@ -75,16 +82,6 @@
7582
" {Data Analysis, Statistics and Probability (physics.data-an)},\n",
7683
" Quantitative Methods (q-bio.QM)}\n",
7784
"}\n",
78-
"\n",
79-
"@misc{fernandez2023spivae,\n",
80-
" title = {{{SPIVAE}}},\n",
81-
" author = {{Fern{\\'a}ndez-Fern{\\'a}ndez}, Gabriel},\n",
82-
" year = {2023},\n",
83-
" month = jul,\n",
84-
" url = {https://github.com/GabrielFernandezFernandez/SPIVAE},\n",
85-
" urldate = {2023-07-21},\n",
86-
" copyright = {Apache-2.0}\n",
87-
"}\n",
8885
"```"
8986
]
9087
}

nbs/source/02_utils.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -85,7 +85,7 @@
8585
" log_likelihood = mix_gaussian_loss(y_hat, target, reduction=self.reduction)\n",
8686
" else:\n",
8787
" log_likelihood = mix_gaussian_loss(y_hat, target[:,self.RF:], reduction=self.reduction)\n",
88-
" \n",
88+
"\n",
8989
" if self.reduction=='none':\n",
9090
" kl = kl_divergence(mu, logvar, reduction='none') if self.c else 0\n",
9191
" return log_likelihood, self.beta, kl\n",

nbs/tutorials/2_generation_FBM.ipynb

Lines changed: 14 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -494,6 +494,20 @@
494494
"We can extract both parameters, $\\alpha$ and $D$, by fitting the scaling of the TA-MSD."
495495
]
496496
},
497+
{
498+
"cell_type": "markdown",
499+
"metadata": {},
500+
"source": [
501+
"The time average mean squared displacement (TA-MSD) can be defined in terms of a trajectory that is\n",
502+
"sampled at $T$ discrete times $t_i = i\\Delta t$ as,\n",
503+
"$$ \\mathrm{TA−MSD}(\\Delta t) =\n",
504+
"\\frac{1}{T − \\Delta t}\n",
505+
"\\sum\\limits^{T −\\Delta t}_{i=1}\n",
506+
"[x(t_i) − x(t_i + \\Delta t)]^2,\n",
507+
"$$\n",
508+
"where $\\Delta t$ is the time lag."
509+
]
510+
},
497511
{
498512
"cell_type": "code",
499513
"execution_count": null,

0 commit comments

Comments
 (0)