-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
141 lines (104 loc) · 5.15 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
from tensorflow.keras.models import Model,load_model,model_from_json
from tensorflow.keras.layers import Input, Conv3D,UpSampling3D, Conv3DTranspose, Dropout,Activation, ReLU, LeakyReLU, Concatenate,BatchNormalization
from tensorflow.keras.optimizers import Adam
import tensorflow.compat.v1 as tf
import tensorflow_addons as tfa
from tensorflow_addons.layers import InstanceNormalization
from random import randint
import os
import numpy as np
from utils2 import get_dsc
import config
#from attention import PAM, CAM
FLAGS = tf.app.flags.FLAGS
class Vol2SegGAN():
def __init__(self, img_shape, seg_shape, Nfilter_start=64, depth=4):
self.img_shape = img_shape
self.seg_shape = seg_shape
self.Nfilter_start = Nfilter_start
self.depth = depth
def Generator(self):
inputs = Input(self.img_shape, name='input_image')
def encoder_step(layer, Nf, inorm=True):
x = Conv3D(Nf, kernel_size=3, strides=2, kernel_initializer='he_normal', padding='same')(layer)
x = InstanceNormalization()(x)
x = LeakyReLU()(x)
x=Dropout(0.2)(x)
x = Conv3D(Nf*2, kernel_size=3,kernel_initializer='he_normal', padding='same')(x)
x = InstanceNormalization()(x)
x = LeakyReLU()(x)
x=Dropout(0.2)(x)
return x
def Conv3d_BN(x, nb_filter, kernel_size, strides=1, padding='same', use_activation=True):
x = Conv3D(nb_filter, kernel_size, padding=padding, strides=strides, kernel_initializer='he_normal')(x)
x = BatchNormalization(axis=3)(x)
if use_activation:
x = Activation('relu')(x)
return x
else:
return x
def Conv3d(layer):
#x = PAM()(layer)
x = Conv3D(256, 3, padding='same', use_bias=False, kernel_initializer='he_normal')(layer)
x = BatchNormalization(axis=3)(x)
x = Activation('relu')(x)
x = Dropout(0.5)(x)
x = Conv3D(256, 3, padding='same', use_bias=False, kernel_initializer='he_normal')(x)
return x
def future_translate(layer, Nf):
x_atr = Conv3D(Nf, kernel_size=3, strides=2, kernel_initializer='he_normal', padding='same')(layer)
x_atr = InstanceNormalization()(x_atr)
x_atr = LeakyReLU()(x_atr)
y1 = Conv3D(50, kernel_size=3, strides=1, dilation_rate=1, padding='same')(x_atr)
y2 = Conv3D(50, kernel_size=3, strides=1, dilation_rate=3, padding='same')(x_atr)
y3 = Conv3D(50, kernel_size=3, strides=1, dilation_rate=5, padding='same')(x_atr)
y3=UpSampling3D(size=1)(y3)
y2_3=Concatenate()([y2,y3])
y2_3=UpSampling3D(size=1)(y2_3)
y=Concatenate()([y1,y2_3])
y=Conv3d(y)
return y
def decoder_step(layer, layer_to_concatenate, Nf):
x = Conv3DTranspose(Nf, kernel_size=5, strides=2, padding='same', kernel_initializer='he_normal')(layer)
x = InstanceNormalization()(x)
x = LeakyReLU()(x)
x = Concatenate()([x, layer_to_concatenate])
x = Dropout(0.2)(x)
x = Conv3D(Nf, kernel_size=3,kernel_initializer='he_normal', padding='same')(x)
x = InstanceNormalization()(x)
x = LeakyReLU()(x)
x=Dropout(0.2)(x)
return x
layers_to_concatenate = []
x = inputs
# encoder
for d in range(self.depth-1):
x = encoder_step(x, self.Nfilter_start*np.power(2,d))
layers_to_concatenate.append(x)
# future_translate
x = future_translate(x, self.Nfilter_start*np.power(2,self.depth-1))
# decoder
for d in range(self.depth-2, -1, -1):
x = decoder_step(x, layers_to_concatenate.pop(), self.Nfilter_start*np.power(2,d))
# classifier
last = Conv3DTranspose(4, kernel_size=4, strides=2, padding='same', kernel_initializer='he_normal', activation='softmax', name='output_generator')(x)
# Create model
return Model(inputs=inputs, outputs=last, name='Generator')
def Discriminator(self):
inputs = Input(self.img_shape, name='input_image')
targets = Input(self.seg_shape, name='target_image')
def encoder_step(layer, Nf, inorm=True):
x = Conv3D(Nf, kernel_size=5, strides=2, kernel_initializer='he_normal', padding='same')(layer)
if inorm:
x = InstanceNormalization()(x)
x = LeakyReLU()(x)
x = Dropout(0.2)(x)
return x
x = Concatenate()([inputs, targets])
for d in range(self.depth):
if d==0:
x = encoder_step(x, self.Nfilter_start*np.power(2,d), False)
else:
x = encoder_step(x, self.Nfilter_start*np.power(2,d))
last = tf.keras.layers.Conv3D(1, 5, strides=1, padding='same', kernel_initializer='he_normal', name='output_discriminator')(x)
return Model(inputs=[targets, inputs], outputs=last, name='Discriminator')