-
Notifications
You must be signed in to change notification settings - Fork 1
/
gwl_model.py
736 lines (675 loc) · 34.4 KB
/
gwl_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
"""
This script contains the functions related to Gromove-Wasserstein Learning
"""
import copy
import matplotlib.pyplot as plt
import numpy as np
import pickle
from gwl_preprocess import IndexSampler, cost_sampler1, cost_sampler2
from sklearn.manifold import TSNE
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import os
import logging
logging.basicConfig()
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
class GromovWassersteinEmbedding(nn.Module):
"""
Learning embeddings from Cosine similarity
"""
def __init__(self, num1: int, num2: int, dim: int, cost_type: str = 'cosine', loss_type: str = 'L2'):
super(GromovWassersteinEmbedding, self).__init__()
self.num1 = num1
self.num2 = num2
self.dim = dim
self.cost_type = cost_type
self.loss_type = loss_type
emb1 = nn.Embedding(self.num1, self.dim)
emb1.weight = nn.Parameter(
torch.FloatTensor(self.num1, self.dim).uniform_(-1 / self.dim, 1 / self.dim))
emb2 = nn.Embedding(self.num2, self.dim)
emb2.weight = nn.Parameter(
torch.FloatTensor(self.num2, self.dim).uniform_(-1 / self.dim, 1 / self.dim))
self.emb_model = nn.ModuleList([emb1, emb2])
def orthogonal(self, index, idx):
embs = self.emb_model[idx](index)
orth = torch.matmul(torch.t(embs), embs)
orth -= torch.eye(embs.size(1))
return (orth**2).sum()
def self_cost_mat(self, index, idx):
embs = self.emb_model[idx](index) # (batch_size, dim)
if self.cost_type == 'cosine':
# cosine similarity
energy = torch.sqrt(torch.sum(embs ** 2, dim=1, keepdim=True)) # (batch_size, 1)
cost = 1-torch.exp(-5*(1-torch.matmul(embs, torch.t(embs)) / (torch.matmul(energy, torch.t(energy)) + 1e-5)))
else:
# Euclidean distance
embs = torch.matmul(embs, torch.t(embs)) # (batch_size, batch_size)
embs_diag = torch.diag(embs).view(-1, 1).repeat(1, embs.size(0)) # (batch_size, batch_size)
cost = 1-torch.exp(-(embs_diag + torch.t(embs_diag) - 2 * embs)/embs.size(1))
return cost
def mutual_cost_mat(self, index1, index2):
embs1 = self.emb_model[0](index1) # (batch_size1, dim)
embs2 = self.emb_model[1](index2) # (batch_size2, dim)
if self.cost_type == 'cosine':
# cosine similarity
energy1 = torch.sqrt(torch.sum(embs1 ** 2, dim=1, keepdim=True)) # (batch_size1, 1)
energy2 = torch.sqrt(torch.sum(embs2 ** 2, dim=1, keepdim=True)) # (batch_size2, 1)
cost = 1-torch.exp(-(1-torch.matmul(embs1, torch.t(embs2))/(torch.matmul(energy1, torch.t(energy2))+1e-5)))
else:
# Euclidean distance
embs = torch.matmul(embs1, torch.t(embs2)) # (batch_size1, batch_size2)
# (batch_size1, batch_size2)
embs_diag1 = torch.diag(torch.matmul(embs1, torch.t(embs1))).view(-1, 1).repeat(1, embs2.size(0))
# (batch_size2, batch_size1)
embs_diag2 = torch.diag(torch.matmul(embs2, torch.t(embs2))).view(-1, 1).repeat(1, embs1.size(0))
cost = 1-torch.exp(-(embs_diag1 + torch.t(embs_diag2) - 2 * embs)/embs1.size(1))
return cost
def tensor_times_mat(self, cost_s, cost_t, trans, mu_s, mu_t):
if self.loss_type == 'L2':
# f1(a) = a^2, f2(b) = b^2, h1(a) = a, h2(b) = 2b
# cost_st = f1(cost_s)*mu_s*1_nt^T + 1_ns*mu_t^T*f2(cost_t)^T
# cost = cost_st - h1(cost_s)*trans*h2(cost_t)^T
f1_st = torch.matmul(cost_s ** 2, mu_s).repeat(1, trans.size(1))
f2_st = torch.matmul(torch.t(mu_t), torch.t(cost_t ** 2)).repeat(trans.size(0), 1)
cost_st = f1_st + f2_st
cost = cost_st - 2 * torch.matmul(torch.matmul(cost_s, trans), torch.t(cost_t))
else:
# f1(a) = a*log(a) - a, f2(b) = b, h1(a) = a, h2(b) = log(b)
# cost_st = f1(cost_s)*mu_s*1_nt^T + 1_ns*mu_t^T*f2(cost_t)^T
# cost = cost_st - h1(cost_s)*trans*h2(cost_t)^T
f1_st = torch.matmul(cost_s * torch.log(cost_s + 1e-5) - cost_s, mu_s).repeat(1, trans.size(1))
f2_st = torch.matmul(torch.t(mu_t), torch.t(cost_t)).repeat(trans.size(0), 1)
cost_st = f1_st + f2_st
cost = cost_st - torch.matmul(torch.matmul(cost_s, trans), torch.t(torch.log(cost_t + 1e-5)))
return cost
def similarity(self, cost_pred, cost_truth, mask=None):
if mask is None:
if self.loss_type == 'L2':
loss = ((cost_pred - cost_truth) ** 2) * torch.exp(-cost_truth)
else:
loss = cost_pred * torch.log(cost_pred / (cost_truth + 1e-5))
else:
if self.loss_type == 'L2':
# print(mask.size())
# print(cost_truth.size())
# print(cost_pred.size())
loss = mask.data * ((cost_pred - cost_truth) ** 2) * torch.exp(-cost_truth)
else:
loss = mask.data * (cost_pred * torch.log(cost_pred / (cost_truth + 1e-5)))
loss = loss.sum()
return loss
def forward(self, index1, index2, trans, mu_s, mu_t, cost1, cost2, prior=None, mask1=None, mask2=None, mask12=None):
cost_s = self.self_cost_mat(index1, 0)
cost_t = self.self_cost_mat(index2, 1)
cost_st = self.mutual_cost_mat(index1, index2)
cost = self.tensor_times_mat(cost_s, cost_t, trans, mu_s, mu_t)
d_gw = (cost * trans).sum()
d_w = (cost_st * trans).sum()
regularizer = self.similarity(cost_s, cost1, mask1) + self.similarity(cost_t, cost2, mask2)
regularizer += self.orthogonal(index1, 0) + self.orthogonal(index2, 1)
if prior is not None:
regularizer += self.similarity(cost_st, prior, mask12)
return d_gw, d_w, regularizer
def plot_and_save(self, index1: torch.Tensor, index2: torch.Tensor, output_name: str = None):
"""
Plot and save cost matrix
Args:
index1: a (batch_size, 1) Long/CudaLong Tensor indicating the indices of entities
index2: a (batch_size, 1) Long/CudaLong Tensor indicating the indices of entities
output_name: a string indicating the output image's name
Returns:
save cost matrix as a .png file
"""
cost_s = self.self_cost_mat(index1, 0).data.cpu().numpy()
cost_t = self.self_cost_mat(index2, 0).data.cpu().numpy()
cost_st = self.mutual_cost_mat(index1, index2).data.cpu().numpy()
pc_kwargs = {'rasterized': True, 'cmap': 'viridis'}
fig, axs = plt.subplots(1, 3, figsize=(5, 5), constrained_layout=True)
im = axs[0, 0].pcolormesh(cost_s, **pc_kwargs)
fig.colorbar(im, ax=axs[0, 0])
axs[0, 0].set_title('source cost')
axs[0, 0].set_aspect('equal')
im = axs[0, 1].pcolormesh(cost_t, **pc_kwargs)
fig.colorbar(im, ax=axs[0, 1])
axs[0, 1].set_title('target cost')
axs[0, 1].set_aspect('equal')
im = axs[0, 2].pcolormesh(cost_st, **pc_kwargs)
fig.colorbar(im, ax=axs[0, 2])
axs[0, 2].set_title('mutual cost')
axs[0, 2].set_aspect('equal')
if output_name is None:
plt.savefig('result.png')
else:
plt.savefig(output_name)
plt.close("all")
class GromovWassersteinLearning(object):
"""
Learning Gromov-Wasserstein distance in a nonparametric way.
"""
def __init__(self, hyperpara_dict):
"""
Initialize configurations
Args:
hyperpara_dict: a dictionary containing the configurations of model
dict = {'src_number': the number of entities in the source domain,
'tar_number': the number of entities in the target domain,
'dimension': the proposed dimension of entities' embeddings,
'loss_type': 'KL' or 'L2'
}
"""
self.src_num = hyperpara_dict['src_number']
self.tar_num = hyperpara_dict['tar_number']
self.dim = hyperpara_dict['dimension']
self.loss_type = hyperpara_dict['loss_type']
self.cost_type = hyperpara_dict['cost_type']
self.ot_method = hyperpara_dict['ot_method']
self.gwl_model = GromovWassersteinEmbedding(self.src_num, self.tar_num, self.dim, self.loss_type)
self.d_gw = []
self.trans = np.zeros((self.src_num, self.tar_num))
self.Prec = []
self.Recall = []
self.F1 = []
self.NC1 = []
self.NC2 = []
self.EC1 = []
self.EC2 = []
def plot_result(self, index_s, index_t, epoch, prefix):
# tsne
embs_s = self.gwl_model.emb_model[0](index_s)
embs_t = self.gwl_model.emb_model[1](index_t)
embs = np.concatenate((embs_s.cpu().data.numpy(), embs_t.cpu().data.numpy()), axis=0)
embs = TSNE(n_components=2).fit_transform(embs)
plt.figure(figsize=(5, 5))
plt.scatter(embs[:embs_s.size(0), 0], embs[:embs_s.size(0), 1],
marker='.', s=0.5, c='b', edgecolors='b', label='graph 1')
plt.scatter(embs[-embs_t.size(0):, 0], embs[-embs_t.size(0):, 1],
marker='o', s=8, c='', edgecolors='r', label='graph 2')
leg = plt.legend(loc='upper left', ncol=1, shadow=True, fancybox=True)
leg.get_frame().set_alpha(0.5)
plt.title('T-SNE of node embeddings')
plt.savefig('{}/emb_epoch{}_{}_{}.pdf'.format(prefix, epoch, self.ot_method, self.cost_type))
plt.close("all")
trans_b = np.zeros(self.trans.shape)
for i in range(trans_b.shape[0]):
idx = np.argmax(self.trans[i, :])
trans_b[i, idx] = 1
plt.imshow(trans_b)
plt.savefig('{}/trans_epoch{}_{}_{}.png'.format(prefix, epoch, self.ot_method, self.cost_type))
plt.close('all')
def evaluation_matching(self, trans: np.ndarray, cost_s: np.ndarray, cost_t: np.ndarray,
index_s: np.ndarray, index_t: np.ndarray, mask_s: np.ndarray, mask_t: np.ndarray):
"""
Evaluate graph matching result
Args:
trans: (ns, nt) ndarray
cost_s: (ns, ns) ndarray of source cost
cost_t: (nt, nt) ndarray of target cost
index_s: (ns, ) ndarray of source index
index_t: (nt, ) ndarray of target index
Returns:
nc1: node correctness based on trans: #correctly-matched nodes/#nodes * 100%
ec1: edge correctness based on trans: #correctly-matched edges/#edges * 100%
nc2: node correctness based on cost_st
ec2: edge correctness based on cost_st
"""
nc1 = 0
nc2 = 0
ec1 = 0
ec2 = 0
num_edges = np.sum(mask_s)
cost_s += np.eye(trans.shape[0])
cost_s = 1 / cost_s
cost_s -= 1
cost_s[cost_s < 1] = 0
cost_t += np.eye(trans.shape[1])
cost_t = 1 / cost_t
cost_t -= 1
cost_t[cost_t < 1] = 0
# edge correctness
cost_st = self.gwl_model.mutual_cost_mat(index_s, index_t)
cost_st = cost_st.cpu().data.numpy()
pair1 = []
pair2 = []
for i in range(trans.shape[0]):
j1 = np.argmax(trans[i, :])
j2 = np.argmin(cost_st[i, :])
pair1.append(j1)
pair2.append(j2)
if index_s[i] == index_t[j1]:
nc1 += 1
if index_s[i] == index_t[j2]:
nc2 += 1
nc1 = nc1 / trans.shape[0] * 100.
nc2 = nc2 / trans.shape[0] * 100.
idx = np.transpose(np.nonzero(cost_s))
for n in range(idx.shape[0]):
rs = idx[n, 0]
cs = idx[n, 1]
rt1 = pair1[rs]
rt2 = pair2[rs]
ct1 = pair1[cs]
ct2 = pair2[cs]
if mask_t[rt1, ct1] > 0 or mask_t[ct1, rt1] > 0:
ec1 += 1
if mask_t[rt2, ct2] > 0 or mask_t[ct2, rt2] > 0:
ec2 += 1
ec1 = ec1 / num_edges * 100.
ec2 = ec2 / num_edges * 100.
return nc1, ec1, nc2, ec2
def evaluation_recommendation(self, database):
index_s = torch.LongTensor(list(range(self.src_num)))
index_t = torch.LongTensor(list(range(self.tar_num)))
cost_st = self.gwl_model.mutual_cost_mat(index_s, index_t)
cost_st = cost_st.cpu().data.numpy()
prec = np.zeros((3,))
recall = np.zeros((3,))
f1 = np.zeros((3,))
tops = [1, 3, 5]
num = 0
for n in range(len(database['mutual_interactions'])):
pair = database['mutual_interactions'][n]
source_list = pair[0]
target_list = pair[1]
prec_n = np.zeros((3,))
recall_n = np.zeros((3,))
for i in range(len(source_list)):
s = source_list[i]
if i == 0:
items = cost_st[s, :]
else:
items += cost_st[s, :]
idx = np.argsort(items)
for i in range(len(tops)):
top = tops[i]
top_items = idx[:(top*len(target_list))]
for recommend_item in top_items:
if recommend_item in target_list:
prec_n[i] += 1/top
recall_n[i] += 1/len(target_list)
prec_n *= 100
recall_n *= 100
f1_n = (2*prec_n*recall_n)/(prec_n+recall_n+1e-8)
prec += prec_n
recall += recall_n
f1 += f1_n
num += 1
# for n in range(len(database['mutual_interactions'])):
# pair = database['mutual_interactions'][n]
# source_list = pair[0]
# target_list = pair[1]
# for s in source_list:
# prec_s = np.zeros((3,))
# recall_s = np.zeros((3,))
#
# items = cost_st[s, :]
# idx = np.argsort(items) # from small to large
# for i in range(len(tops)):
# top = tops[i]
# top_items = idx[:top]
# for recommend_item in top_items:
# if recommend_item in target_list:
# prec_s[i] += 1/top
# recall_s[i] += 1/len(target_list)
# prec_s *= 100
# recall_s *= 100
# f1_s = (2*prec_s*recall_s)/(prec_s+recall_s+1e-8)
#
# prec += prec_s
# recall += recall_s
# f1 += f1_s
# num += 1
prec /= num
recall /= num
f1 /= num
return prec, recall, f1
def regularized_gromov_wasserstein_discrepancy(self, cost_s, cost_t, cost_mutual, mu_s, mu_t, hyperpara_dict):
"""
Learning optimal transport from source to target domain
Args:
cost_s: (Ns, Ns) matrix representing the relationships among source entities
cost_t: (Nt, Nt) matrix representing the relationships among target entities
cost_mutual: (Ns, Nt) matrix representing the prior of proposed optimal transport
mu_s: (Ns, 1) vector representing marginal probability of source entities
mu_t: (Nt, 1) vector representing marginal probability of target entities
hyperpara_dict: a dictionary of hyperparameters
dict = {epochs: the number of epochs,
batch_size: batch size,
use_cuda: use cuda or not,
strategy: hard or soft,
beta: the weight of proximal term
outer_iter: the outer iteration of ipot
inner_iter: the inner iteration of sinkhorn
prior: True or False
}
Returns:
"""
ns = mu_s.size(0)
nt = mu_t.size(0)
trans = torch.matmul(mu_s, torch.t(mu_t))
a = mu_s.sum().repeat(ns, 1)
a /= a.sum()
b = 0
beta = hyperpara_dict['beta']
if self.loss_type == 'L2':
# f1(a) = a^2, f2(b) = b^2, h1(a) = a, h2(b) = 2b
# cost_st = f1(cost_s)*mu_s*1_nt^T + 1_ns*mu_t^T*f2(cost_t)^T
# cost = cost_st - h1(cost_s)*trans*h2(cost_t)^T
f1_st = torch.matmul(cost_s ** 2, mu_s).repeat(1, nt)
f2_st = torch.matmul(torch.t(mu_t), torch.t(cost_t ** 2)).repeat(ns, 1)
cost_st = f1_st + f2_st
for t in range(hyperpara_dict['outer_iteration']):
cost = cost_st - 2 * torch.matmul(torch.matmul(cost_s, trans), torch.t(cost_t)) + 0.1*cost_mutual
if self.ot_method == 'proximal':
kernel = torch.exp(-cost / beta) * trans
else:
kernel = torch.exp(-cost / beta)
for l in range(hyperpara_dict['inner_iteration']):
b = mu_t / torch.matmul(torch.t(kernel), a)
a = mu_s / torch.matmul(kernel, b)
# print((b**2).sum())
# print((a**2).sum())
# print((b**2).sum()*(a**2).sum())
trans = torch.matmul(torch.matmul(torch.diag(a[:, 0]), kernel), torch.diag(b[:, 0]))
if t % 100 == 0:
print('sinkhorn iter {}/{}'.format(t, hyperpara_dict['outer_iteration']))
cost = cost_st - 2 * torch.matmul(torch.matmul(cost_s, trans), torch.t(cost_t))
else:
# f1(a) = a*log(a) - a, f2(b) = b, h1(a) = a, h2(b) = log(b)
# cost_st = f1(cost_s)*mu_s*1_nt^T + 1_ns*mu_t^T*f2(cost_t)^T
# cost = cost_st - h1(cost_s)*trans*h2(cost_t)^T
f1_st = torch.matmul(cost_s * torch.log(cost_s + 1e-5) - cost_s, mu_s).repeat(1, nt)
f2_st = torch.matmul(torch.t(mu_t), torch.t(cost_t)).repeat(ns, 1)
cost_st = f1_st + f2_st
for t in range(hyperpara_dict['outer_iteration']):
cost = cost_st - torch.matmul(torch.matmul(cost_s, trans), torch.t(torch.log(cost_t + 1e-5)))
if self.ot_method == 'proximal':
kernel = torch.exp(-cost / beta) * trans
else:
kernel = torch.exp(-cost / beta)
for l in range(hyperpara_dict['inner_iteration']):
b = mu_t / torch.matmul(torch.t(kernel), a)
a = mu_s / torch.matmul(kernel, b)
trans = torch.matmul(torch.matmul(torch.diag(a[:, 0]), kernel), torch.diag(b[:, 0]))
cost = cost_st - torch.matmul(torch.matmul(cost_s, trans), torch.t(torch.log(cost_t + 1e-5)))
d_gw = (cost * trans).sum()
return trans, d_gw, cost
def train_without_prior(self, database, optimizer, hyperpara_dict, scheduler=None):
"""
Regularized Gromov-Wasserstein Embedding
Args:
database: proposed database
optimizer: the pytorch optimizer
hyperpara_dict: a dictionary of hyperparameters
dict = {epochs: the number of epochs,
batch_size: batch size,
use_cuda: use cuda or not,
strategy: hard or soft,
beta: the weight of proximal term
outer_iter: the outer iteration of ipot
inner_iter: the inner iteration of sinkhorn
prior: True or False
}
scheduler: scheduler of learning rate.
Returns:
d_gw, trans
"""
device = torch.device('cuda:0' if hyperpara_dict['use_cuda'] else 'cpu')
if hyperpara_dict['use_cuda']:
torch.cuda.manual_seed(1)
kwargs = {'num_workers': 1, 'pin_memory': True} if hyperpara_dict['use_cuda'] else {}
self.gwl_model.to(device)
self.gwl_model.train()
num_src_node = len(database['src_interactions'])
num_tar_node = len(database['tar_interactions'])
src_loader = DataLoader(IndexSampler(num_src_node),
batch_size=hyperpara_dict['batch_size'],
shuffle=True,
**kwargs)
tar_loader = DataLoader(IndexSampler(num_tar_node),
batch_size=hyperpara_dict['batch_size'],
shuffle=True,
**kwargs)
for epoch in range(hyperpara_dict['epochs']):
gw = 0
trans_tmp = np.zeros(self.trans.shape)
if scheduler is not None:
scheduler.step()
for src_idx, indices1 in enumerate(src_loader):
for tar_idx, indices2 in enumerate(tar_loader):
# Estimate Gromov-Wasserstein discrepancy give current costs
cost_s, cost_t, mu_s, mu_t, index_s, index_t, mask_s, mask_t = \
cost_sampler2(database, indices1, indices2, device)
if hyperpara_dict['display']:
self.plot_result(index_s, index_t, epoch, prefix=hyperpara_dict['prefix'])
if hyperpara_dict['strategy'] == 'hard':
z = np.random.rand()
if z < epoch/hyperpara_dict['epochs']:
# cost1 = mask_s.data * self.gwl_model.self_cost_mat(index_s, 0).data
# cost2 = mask_t.data * self.gwl_model.self_cost_mat(index_t, 1).data
cost1 = self.gwl_model.self_cost_mat(index_s, 0).data
cost2 = self.gwl_model.self_cost_mat(index_t, 1).data
cost12 = self.gwl_model.mutual_cost_mat(index_s, index_t).data
else:
cost1 = cost_s
cost2 = cost_t
cost12 = 0
else:
# cost_s_emb = mask_s.data * self.gwl_model.self_cost_mat(index_s, 0).data
# cost_t_emb = mask_t.data * self.gwl_model.self_cost_mat(index_t, 1).data
cost_s_emb = self.gwl_model.self_cost_mat(index_s, 0).data
cost_t_emb = self.gwl_model.self_cost_mat(index_t, 1).data
cost_st_12 = self.gwl_model.mutual_cost_mat(index_s, index_t).data
# alpha = max([(hyperpara_dict['epochs'] - epoch) / hyperpara_dict['epochs'], 0.5])
alpha = (hyperpara_dict['epochs'] - epoch) / hyperpara_dict['epochs']
cost1 = alpha * cost_s + (1-alpha) * cost_s_emb
cost2 = alpha * cost_t + (1-alpha) * cost_t_emb
cost12 = (1-alpha) * cost_st_12
trans, d_gw, cost_12 = self.regularized_gromov_wasserstein_discrepancy(cost1, cost2, cost12,
mu_s, mu_t, hyperpara_dict)
# estimate optimal transport
trans_np = trans.cpu().data.numpy()
index_s_np = index_s.cpu().data.numpy()
index_t_np = index_t.cpu().data.numpy()
patch = self.trans[index_s_np, :]
patch = patch[:, index_t_np]
energy = np.sum(patch) + 1
for row in range(trans_np.shape[0]):
for col in range(trans_np.shape[1]):
trans_tmp[index_s_np[row], index_t_np[col]] += (energy * trans_np[row, col])
gw += d_gw
if epoch == 0:
sgd_iter = hyperpara_dict['sgd_iteration']
else:
sgd_iter = 100
# inner iteration based on SGD
for num in range(sgd_iter):
# zero the parameter gradients
optimizer.zero_grad()
# Update source and target embeddings alternatively
loss_gw, loss_w, regularizer = self.gwl_model(index_s, index_t, trans,
mu_s, mu_t, cost_s, cost_t,
prior=cost_12, mask1=mask_s,
mask2=mask_t, mask12=None)
loss = 1e3 * loss_gw + 1e3 * loss_w + regularizer
loss.backward()
optimizer.step()
if num % 10 == 0:
print('inner {}/{}: loss={:.6f}.'.format(num, sgd_iter, loss.data))
nc1, ec1, nc2, ec2 = self.evaluation_matching(trans_np,
cost_s.cpu().data.numpy(),
cost_t.cpu().data.numpy(),
index_s, index_t,
mask_s.cpu().data.numpy(),
mask_t.cpu().data.numpy())
self.NC1.append(nc1)
self.NC2.append(nc2)
self.EC1.append(ec1)
self.EC2.append(ec2)
logger.info('Train Epoch: {}'.format(epoch))
logger.info('- node correctness: {:.4f}%, {:.4f}%'.format(nc1, nc2))
logger.info('- edge correctness: {:.4f}%, {:.4f}%'.format(ec1, ec2))
if src_idx % 100 == 1:
logger.info('Train Epoch: {} [{}/{} ({:.0f}%)]'.format(
epoch, src_idx * hyperpara_dict['batch_size'],
len(src_loader.dataset), 100. * src_idx / len(src_loader)))
logger.info('- GW distance = {:.4f}.'.format(gw/len(src_loader)))
trans_tmp /= np.max(trans_tmp)
self.trans = trans_tmp
self.d_gw.append(gw/len(src_loader))
def train_with_prior(self, database, optimizer, hyperpara_dict, scheduler=None):
"""
Regularized Gromov-Wasserstein Embedding
Args:
database: proposed database
optimizer: the pytorch optimizer
hyperpara_dict: a dictionary of hyperparameters
dict = {epochs: the number of epochs,
batch_size: batch size,
use_cuda: use cuda or not,
strategy: hard or soft,
beta: the weight of proximal term
outer_iter: the outer iteration of ipot
inner_iter: the inner iteration of sinkhorn
prior: True or False
}
scheduler: scheduler of learning rate.
Returns:
d_gw, trans
"""
device = torch.device('cuda:0' if hyperpara_dict['use_cuda'] else 'cpu')
if hyperpara_dict['use_cuda']:
torch.cuda.manual_seed(1)
kwargs = {'num_workers': 1, 'pin_memory': True} if hyperpara_dict['use_cuda'] else {}
self.gwl_model.to(device)
self.gwl_model.train()
num_interaction = len(database['mutual_interactions'])
train_base = copy.deepcopy(database)
test_base = copy.deepcopy(database)
train_base['mutual_interactions'] = train_base['mutual_interactions'][:int(0.75*num_interaction)]
test_base['mutual_interactions'] = test_base['mutual_interactions'][int(0.75*num_interaction):]
num_interaction_train = len(train_base['mutual_interactions'])
dataloader = DataLoader(IndexSampler(num_interaction_train),
batch_size=hyperpara_dict['batch_size'],
shuffle=True,
**kwargs)
for epoch in range(hyperpara_dict['epochs']):
gw = 0
trans_tmp = np.zeros(self.trans.shape)
if scheduler is not None:
scheduler.step()
for batch_idx, indices in enumerate(dataloader):
# Estimate Gromov-Wasserstein discrepancy give current costs
cost_s, cost_t, mu_s, mu_t, index_s, index_t, prior, mask_s, mask_t, mask_st = \
cost_sampler1(train_base, indices, device)
self.plot_result(index_s, index_t, epoch, prefix=hyperpara_dict['prefix'])
if hyperpara_dict['strategy'] == 'hard':
z = np.random.rand()
if z < epoch / hyperpara_dict['epochs']:
cost1 = mask_s.data * self.gwl_model.self_cost_mat(index_s, 0).data
cost2 = mask_t.data * self.gwl_model.self_cost_mat(index_t, 1).data
cost12 = mask_st.data * self.gwl_model.mutual_cost_mat(index_s, index_t).data
else:
cost1 = cost_s
cost2 = cost_t
cost12 = prior
else:
cost_s_emb = mask_s.data * self.gwl_model.self_cost_mat(index_s, 0).data
cost_t_emb = mask_t.data * self.gwl_model.self_cost_mat(index_t, 1).data
cost_st_12 = mask_st.data * self.gwl_model.mutual_cost_mat(index_s, index_t).data
alpha = max([(hyperpara_dict['epochs'] - epoch) / hyperpara_dict['epochs'], 0.7])
cost1 = alpha * cost_s + (1 - alpha) * cost_s_emb
cost2 = alpha * cost_t + (1 - alpha) * cost_t_emb
cost12 = alpha * prior + (1 - alpha) * cost_st_12
trans, d_gw, cost_12 = self.regularized_gromov_wasserstein_discrepancy(cost1, cost2, cost12,
mu_s, mu_t, hyperpara_dict)
# estimate optimal transport
trans_np = trans.cpu().data.numpy()
index_s_np = index_s.cpu().data.numpy()
index_t_np = index_t.cpu().data.numpy()
patch = self.trans[index_s_np, :]
patch = patch[:, index_t_np]
energy = np.sum(patch) + 1
for row in range(trans_np.shape[0]):
for col in range(trans_np.shape[1]):
trans_tmp[index_s_np[row], index_t_np[col]] += (energy * trans_np[row, col])
gw += d_gw
# inner iteration based on SGD
if epoch == 0:
sgd_iter = hyperpara_dict['sgd_iteration']
else:
sgd_iter = 20
for num in range(sgd_iter):
# zero the parameter gradients
optimizer.zero_grad()
# Update source and target embeddings alternatively
loss_gw, loss_w, regularizer = self.gwl_model(index_s, index_t, trans, mu_s, mu_t,
cost_s, cost_t, prior, # +0.5*cost_12,
mask_s, mask_t, mask_st)
loss = loss_gw + loss_w + regularizer
loss.backward()
optimizer.step()
if num % 10 == 0:
print('inner {}/{}: loss={:.6f}.'.format(num, sgd_iter, loss.data))
prec, recall, f1 = self.evaluation_recommendation(test_base)
self.Prec.append(prec)
self.Recall.append(recall)
self.F1.append(f1)
logger.info('Train Epoch: {}'.format(epoch))
logger.info('- OT method={}, Distance={}'.format(self.ot_method, self.cost_type))
tops = [1, 3, 5]
for top in range(3):
logger.info('- Top-{}, precision={:.4f}%, recall={:.4f}%, f1={:.4f}%'.format(
tops[top], prec[top], recall[top], f1[top]))
if batch_idx % 100 == 1:
logger.info('Train Epoch: {} [{}/{} ({:.0f}%)]'.format(
epoch, batch_idx * hyperpara_dict['batch_size'],
len(dataloader.dataset), 100. * batch_idx / len(dataloader)))
logger.info('- GW distance = {:.4f}.'.format(gw / len(dataloader)))
trans_tmp /= np.max(trans_tmp)
self.trans = trans_tmp
self.d_gw.append(gw / len(dataloader))
def obtain_embedding(self, hyperpara_dict, index, idx):
device = torch.device('cuda:0' if hyperpara_dict['use_cuda'] else 'cpu')
self.gwl_model.to(device)
self.gwl_model.eval()
return self.gwl_model.emb_model[idx](index)
def save_model(self, full_path, mode: str = 'entire'):
"""
Save trained model
:param full_path: the path of directory
:param mode: 'parameter' for saving only parameters of the model,
'entire' for saving entire model
"""
if mode == 'entire':
torch.save(self.gwl_model, full_path)
logger.info('The entire model is saved in {}.'.format(full_path))
elif mode == 'parameter':
torch.save(self.gwl_model.state_dict(), full_path)
logger.info('The parameters of the model is saved in {}.'.format(full_path))
else:
logger.warning("'{}' is a undefined mode, we use 'entire' mode instead.".format(mode))
torch.save(self.gwl_model, full_path)
logger.info('The entire model is saved in {}.'.format(full_path))
def load_model(self, full_path, mode: str = 'entire'):
"""
Load pre-trained model
:param full_path: the path of directory
:param mode: 'parameter' for saving only parameters of the model,
'entire' for saving entire model
"""
if mode == 'entire':
self.gwl_model = torch.load(full_path)
elif mode == 'parameter':
self.gwl_model.load_state_dict(torch.load(full_path))
else:
logger.warning("'{}' is a undefined mode, we use 'entire' mode instead.".format(mode))
self.gwl_model = torch.load(full_path)
def save_matching(self, full_path):
with open(full_path, 'wb') as f: # Python 3: open(..., 'wb')
pickle.dump([self.NC1, self.EC1, self.NC2, self.EC2, self.d_gw], f)
def save_recommend(self, full_path):
with open(full_path, 'wb') as f: # Python 3: open(..., 'wb')
pickle.dump([self.Prec, self.Recall, self.F1, self.d_gw, self.trans], f)