@@ -21,6 +21,9 @@ Parameters
2121
2222 Iteratively increase the number of model parameters, starting at one, until n_model is reached
2323 or the reduction in variance of the model is not significant at the conf_level level.
24+ - **T** | **equi_space** :: [Type => Str | List] ``Arg = [min/max/]inc[+a|n]] or file|list``
25+
26+ Evaluate the best-fit regression model at the equidistant points implied by the arguments.
2427- **W** | **weights** :: [Type => Str | []] ``Arg = [+s]``
2528
2629 Weights are supplied in input column 3. Do a weighted least squares fit [or start with
@@ -42,7 +45,7 @@ function trend1d(cmd0::String="", arg1=nothing; kwargs...)
4245 d = init_module (false , kwargs... )[1 ] # Also checks if the user wants ONLY the HELP mode
4346
4447 cmd, = parse_common_opts (d, " " , [:V_params :b :d :e :f :h :i :w :yx ])
45- cmd = parse_these_opts (cmd, d, [[:C :condition_number ], [:I :conf_level :confidence_level ], [:F :out :output ], [:W :weights ]])
48+ cmd = parse_these_opts (cmd, d, [[:C :condition_number ], [:I :conf_level :confidence_level ], [:F :out :output ], [:T :equi_space ], [ : W :weights ]])
4649 opt_F = scan_opt (cmd, " -F" )
4750 ((val = find_in_dict (d, [:N :model ], false )[1 ]) === nothing ) && error (" The option 'model' must be specified" )
4851 if (isa (val, Tuple) && isa (val[1 ], NamedTuple))
0 commit comments