-
Notifications
You must be signed in to change notification settings - Fork 2
/
eval.py
84 lines (69 loc) · 2.53 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
#
# Copyright (c) 2018-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# Modifications for Guinet et al.
# TODO
import io
import numpy as np
import argparse
from utils import *
parser = argparse.ArgumentParser(description="Evaluation of word alignment")
parser.add_argument("--src_emb", type=str, default="", help="Load source embeddings")
parser.add_argument("--tgt_emb", type=str, default="", help="Load target embeddings")
parser.add_argument(
"--center", action="store_true", help="whether to center embeddings or not"
)
parser.add_argument(
"--src_mat",
type=str,
default="",
help="Load source alignment matrix. If none given, the aligment matrix is the identity.",
)
parser.add_argument(
"--tgt_mat",
type=str,
default="",
help="Load target alignment matrix. If none given, the aligment matrix is the identity.",
)
parser.add_argument("--dico_test", type=str, default="", help="test dictionary")
parser.add_argument("--maxload", type=int, default=200000)
parser.add_argument("--nomatch", action="store_true", help="no exact match in lexicon")
params = parser.parse_args()
###### SPECIFIC FUNCTIONS ######
# function specific to evaluation
# the rest of the functions are in utils.py
def load_transform(fname, d1=300, d2=300):
fin = io.open(fname, "r", encoding="utf-8", newline="\n", errors="ignore")
R = np.zeros([d1, d2])
for i, line in enumerate(fin):
tokens = line.split(" ")
R[i, :] = np.array(tokens[0:d2], dtype=float)
return R
###### MAIN ######
print("Evaluation of alignment on %s" % params.dico_test)
if params.nomatch:
print("running without exact string matches")
words_tgt, x_tgt = load_vectors(
params.tgt_emb, maxload=params.maxload, center=params.center
)
words_src, x_src = load_vectors(
params.src_emb, maxload=params.maxload, center=params.center
)
if params.tgt_mat != "":
R_tgt = load_transform(params.tgt_mat)
x_tgt = np.dot(x_tgt, R_tgt)
if params.src_mat != "":
R_src = load_transform(params.src_mat)
x_src = np.dot(x_src, R_src)
src2tgt, lexicon_size = load_lexicon(params.dico_test, words_src, words_tgt)
nnacc = compute_nn_accuracy(x_src, x_tgt, src2tgt, lexicon_size=lexicon_size)
cslsproc = compute_csls_accuracy(x_src, x_tgt, src2tgt, lexicon_size=lexicon_size)
print(
"NN = %.4f - CSLS = %.4f - Coverage = %.4f"
% (nnacc, cslsproc, len(src2tgt) / lexicon_size)
)