-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuild_data.py
547 lines (487 loc) · 25.4 KB
/
build_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
# this file is for convert aig+inv to graph
'''
----------------- Usage of this tool to generate graph for training and testing -----------------
1. Run in the root project directory
2. The dataset in /data/guangyuh/coding_env/AIG2INV/AIG2INV_main/benchmark_folder/ (e.g. /data/guangyuh/coding_env/AIG2INV/AIG2INV_main/benchmark_folder/hwmcc2007)
3. It should be divided into multiple subsets according to the graph size of counterexample (e.g. .../hwmcc2007/subset_0, .../hwmcc2007/subset_1)
----------------- Generate different graph for training and testing -----------------
1. Small dataset for abc
1.1. Simplify the transition relation of the model -> use symbolic simplification + z3's simplify function
1.2. Without deep simplification -> use z3's simplify function only
1.3 Simplify the last cube + z3 simplify function (Maybe not recommended)
2. Complete dataset for abc
2.1. Simplify the transition relation of the model
2.2. Without deep simplification
2.3 Simplify the last cube + z3 simplify function
3. Small dataset for ic3ref -> (skip the graph that could not find the inductive clauses)
3.1. Simplify the transition relation of the model
3.2. Without deep simplification
3.3 Simplify the last cube + z3 simplify function
4. Complete dataset for ic3ref -> (skip the graph that could not find the inductive clauses)
4.1. Simplify the transition relation of the model
4.2 Without deep simplification
4.3 Simplify the last cube + z3 simplify function
Note: this is a multi-threading tool, you can change the number of threads in the main function
'''
import os
import argparse
from natsort import natsorted
import subprocess
import multiprocessing
import subprocess
import shlex
from multiprocessing.pool import ThreadPool
from threading import Timer
import shutil
import time
from tqdm import tqdm
import sys
sys.setrecursionlimit(1000000)
def initialization(dir_name, with_re_generate_inv=False):
'''
with_re-generate_inv: if True, process clean folder function
the folder structure:
./dataset
├── bad_cube_cex2graph
│ ├── cti_for_inv_map_checking -> should be empty
│ ├── expr_to_build_graph -> should be empty
│ ├── ground_truth_table -> should be empty
│ └── json_to_graph_pickle -> should be empty
└── re-generate_inv
├── cmu.dme1.B
├── cmu.dme2.B
├── .......
'''
mkdir_cmd = lambda dir_name: os.system(f"mkdir {dir_name}/bad_cube_cex2graph && mkdir {dir_name}/bad_cube_cex2graph/expr_to_build_graph {dir_name}/bad_cube_cex2graph/cti_for_inv_map_checking {dir_name}/bad_cube_cex2graph/ground_truth_table {dir_name}/bad_cube_cex2graph/json_to_graph_pickle")
if with_re_generate_inv==False:
# new_dir_name = f"{dir_name}_" + time.strftime("%Y%m%d_%H%M%S", time.localtime())
# if old directory exists and file size is not zero, then move it to new directory
if os.path.exists(dir_name):
assert False, "The folder already exists!"
'''
if os.listdir(f"{dir_name}/bad_cube_cex2graph/json_to_graph_pickle")!= [] and os.path.getsize(f"{dir_name}/bad_cube_cex2graph/json_to_graph_pickle") >= 4096: # exist and not empty, change the name
shutil.move(dir_name, new_dir_name)
else: # exist but empty, delete it
# use trash command to delete the empty directory
os.system(f"trash {dir_name}")
'''
# old directory has been handled, then create new directory
os.mkdir(dir_name)
# make file folder under dir_name
mkdir_cmd(dir_name)
print("Finish initialization!")
else:
# clean all the files in the folder bad_cube_cex2graph
if os.path.exists(f"{dir_name}/bad_cube_cex2graph"): os.system(f"trash {dir_name}/bad_cube_cex2graph")
# make file folder under dir_name
mkdir_cmd(dir_name)
print("Finish cleaning the folder bad_cube_cex2graph!")
def call_proc(cmd):
""" This runs in a separate thread. Serializes the command and run"""
#subprocess.call(shlex.split(cmd)) # This will block until cmd finishes
p = subprocess.Popen(shlex.split(cmd), stdout=subprocess.PIPE, stderr=subprocess.PIPE)
_, err = p.communicate()
return (_, err)
def run_cmd(cmd):
" This directly runs the command "
p = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
_, err = p.communicate()
return (_, err)
def run_cmd_with_timer(cmd):
#TODO: This function does not work, need to fix it
timeout = 7200 #2 hour for model checking
" This directly runs the command "
p = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
timer = Timer(timeout, lambda x: x.terminate(), [p])
timer.start()
_, err = p.communicate()
code = p.returncode
if code == -15: #return code of SIGTERM
print('{cmd} over {timeout}, timeout!'.format(timeout=timeout, cmd=cmd))
timer.cancel()
return (_, err)
def walkFile(dir):
files = []
for root, _, files in os.walk(dir):
files = natsorted(files)
#files = [os.path.join(root,f) for f in files if ".aag" not in f]
assert len(files) > 0, "No files in the folder!"
# filtered the files, only keep the .aag file
files = [file for file in files if file.endswith(".aag")]
return files
def generate_subset_dir_lst(subset_range, subset_dir):
if '-' not in subset_range:
return [subset_dir + subset_range]
start, end = map(int, subset_range.split('-'))
return [subset_dir + str(i) for i in range(start, end + 1)]
def find_case_in_selected_dataset_with_inv(model_checker='ic3ref'):
#generate smt2 file for prediction -> SAT model/conterexample
print("Start to find the cases with inductive invariants!")
subset_dir = f"/data/guangyuh/coding_env/AIG2INV/AIG2INV_main/benchmark_folder/{BENCHMARK}/subset_"
# if SUBSET_RANGE is a integer in string format, then convert it to integer, otherwise, it is a list
subset_dir_lst = generate_subset_dir_lst(SUBSET_RANGE, subset_dir) # 10 is the number for test subset
# get all the generated inductive invariants cases' name
# store all folder name in '/data/guangyuh/coding_env/AIG2INV/AIG2INV_main/clause-learning/data-collect/hwmcc07-7200-result/output/tip'
#XXX: Double check before running the script
cases_with_inductive_invariants = os.listdir(f"{GROUND_TRUTH_FOLDER_PREFIX}")
# check whether it contains inv.cnf in subfolder
cases_with_inductive_invariants = [
case
for case in cases_with_inductive_invariants
if os.path.exists(f"{GROUND_TRUTH_FOLDER_PREFIX}/{case}/inv.cnf")
]
# initialize the list to store all the abnormal cases
AigCaseBlackList = [
#-------- benchmark 2007 stuck in generate smt2-----------
# 'eijk.bs3271.S',
# 'cmu.dme1.B',
# 'cmu.dme2.B',
# 'cmu.periodic.N',
# 'eijk.bs3271.S',
# 'texas.PI_main^01.E
# #--------- benchmark 2020 stuck in generate smt2------------
'qspiflash_dualflexpress_divthree-p007',
'qspiflash_dualflexpress_divfive-p074',
'qspiflash_dualflexpress_divthree-p151',
'qspiflash_qflexpress_divfive-p075',
'cal86',
'cal149',
'cal106',
'vcegar_QF_BV_ar',
'rast-p00',
'vis_arrays_bufferAlloc',
'vis.prodcell^01.E_9',
'zipversa_composecrc_prf-p10',
'qspiflash_dualflexpress_divthree-p010',
'vcegar_QF_BV_itc99_b13_p10',
'zipcpu-busdelay-p00',
'zipcpu-busdelay-p30',
'qspiflash_qflexpress_divfive-p137',
'qspiflash_dualflexpress_divthree-p046',
'qspiflash_dualflexpress_divfive-p007',
'qspiflash_dualflexpress_divfive-p154',
'qspiflash_dualflexpress_divfive-p009',
'qspiflash_dualflexpress_divfive-p116',
'qspiflash_dualflexpress_divthree-p111',
'elevator.4.prop1-func-interl',
'h_RCU',
'vgasim_imgfifo-p105',
'cal87',
'cal90',
'picorv32-check-p05',
'cal142',
'picorv32-check-p20',
'cal118',
'cal97',
'cal143',
'cal102',
'cal107',
'cal112',
'dspfilters_fastfir_second-p09',
'dspfilters_fastfir_second-p26',
'dspfilters_fastfir_second-p11',
'cal161',
'rushhour.4.prop1-func-interl',
'cal176',
# #--------- benchmark 2020 stuck in model2graph------------
'dspfilters_fastfir_second-p25',
'dspfilters_fastfir_second-p05',
'dspfilters_fastfir_second-p43',
'dspfilters_fastfir_second-p14',
'dspfilters_fastfir_second-p07',
'dspfilters_fastfir_second-p16',
'dspfilters_fastfir_second-p21',
# #--------- benchmark 2020 stuck in json2networkx------------
# 'dspfilters_fastfir_second-p10',
# 'dspfilters_fastfir_second-p45',
# 'dspfilters_fastfir_second-p42',
# 'dspfilters_fastfir_second-p04',
# 'pgm_protocol.7.prop1-back-serstep',
# 'dspfilters_fastfir_second-p2'
]
all_cases_name_lst = [] # put into multi-threading pool
for subset in subset_dir_lst:
# get file name in each subset
_ = walkFile(subset)
# filter the case name list, only keep the case name in cases_with_inductive_invariants
if _ := [ # if case_name_lst is not empty
case
for case in _
if (case.split('.aag')[0] in cases_with_inductive_invariants and case.split('.aag')[0] not in AigCaseBlackList)
]:
all_cases_name_lst.extend(f"{subset}/{case}" for case in _)
return all_cases_name_lst
def update_progress_bar(pbar):
pbar.update(1)
def generate_smt2(run_mode='normal', model_checker='ic3ref'):
'''
If the `run_mode` set to 'debug', collect.py will exit after checking the inv.cnf without smt2 generation.
Then, this `main.py` will also exit after printing the bad_inv.log
'''
pool = ThreadPool(multiprocessing.cpu_count())
#pool = multiprocessing.Pool(64)
'''
First, go to the select dataset, check whether the case has inductive invariants generated in advance,
if yes, then generate smt2 file for the case, otherwise, skip it.
'''
all_cases_name_lst = find_case_in_selected_dataset_with_inv(model_checker)
results = []
print(f"Start to generate smt2 for {len(all_cases_name_lst)} aiger in all the subset!")
with tqdm(total=len(all_cases_name_lst)) as pbar:
for _, aig_to_generate_smt2 in enumerate(all_cases_name_lst):
print(f"Start to generate smt2 for No.{_} aiger: {(aig_to_generate_smt2.split('/')[-1]).split('.aag')[0]}")
results.append(pool.apply_async(
call_proc,
(
f"python /data/guangyuh/coding_env/AIG2INV/AIG2INV_main/data2dataset/cex2smt2/collect.py --aag {aig_to_generate_smt2} --run-mode {run_mode} --model-checker {model_checker} {SIMPLIFICATION_LABEL} --ground-truth-folder-prefix {GROUND_TRUTH_FOLDER_PREFIX} --dump-folder-prefix {DATASET_FOLDER_PREFIX} --num-cex {NUM_CEX}",
),
callback=lambda _: update_progress_bar(pbar)
))
pool.close()
pool.join()
for result in results:
_, err = result.get()
# if err is not None, print it
if err != b'':
print(f"err: {err}")
else:
print("Congruatulations, no error in subprocess!")
print("Finish all the subprocess, all the subset has generated smt2.")
logs = ["abnormal_header.log", "mismatched_inv.log", "bad_inv.log"]
for log_name in logs:
log_path = f"log/error_handle/{log_name}"
if os.path.exists(log_path):
with open(log_path, "r") as f:
content = f.read()
print(f"{log_name.capitalize().replace('_', ' ')} information: \n{content}")
shutil.move(log_path, f"{log_path}.{time.time()}")
if run_mode == 'debug':
"Exiting the program after checking the inv.cnf without smt2 generation!"
exit(0)
def generate_smt2_error_handle(log_file=None, only_re_generate_inv=False, ic3ref_basic_generalization=""):
# parse the log file, find the cases that has mismatched inductive invariants
# read lines from log file
with open(log_file, "r") as f:
lines = f.readlines()
# get the case name that has mismatched inductive invariants in each line in lines
cases_with_mismatched_inv = [
line.split(" ")[1]
for line in lines
]
# make a copy that record this in cases4re_generate_inv
cases4re_generate_inv = cases_with_mismatched_inv[:]
print("Begin to re-generate the inv.cnf for the cases that has mismatched inductive invariants!")
#mkdir for the cases that has mismatched inductive invariants
cases_with_mismatched_inv = [case for case in cases_with_mismatched_inv \
if not os.path.exists(f"{DATASET_FOLDER_PREFIX}/re-generate_inv/{case.split('/')[-1].split('.aag')[0]}/inv.cnf")]
if cases_with_mismatched_inv != []:
# create the folder for the cases that has mismatched inductive invariants (and have not been fixed yet)
for case in cases_with_mismatched_inv:
if not os.path.exists(
f"{DATASET_FOLDER_PREFIX}/re-generate_inv/{case.split('/')[-1].split('.aag')[0]}"
):
# if the inv.cnf and the folder does not exist, then we create the folder
os.mkdir(f"{DATASET_FOLDER_PREFIX}/re-generate_inv/{case.split('/')[-1].split('.aag')[0]}")
# call IC3 to re-generate the inv.cnf for the cases that has mismatched inductive invariants
pool = ThreadPool(multiprocessing.cpu_count())
results = []
results.extend(
pool.apply_async(
run_cmd,
(
f"cd {DATASET_FOLDER_PREFIX}/re-generate_inv/{case.split('/')[-1].split('.aag')[0]} && /data/guangyuh/coding_env/AIG2INV/AIG2INV_main/utils/IC3ref/IC3 -d {ic3ref_basic_generalization} < {case}",
),
)
for case in cases_with_mismatched_inv
)
pool.close()
pool.join()
for result in results:
_, err = result.get()
# if err is not None, print it
if err != b'':
print(f"err: {err}")
else:
print("Congruatulations, no error in subprocess!")
print("Finish all the subprocess, all the abnormal cases have been fixed.")
if only_re_generate_inv==False:
pool = ThreadPool(multiprocessing.cpu_count())
# begin to generate the smt2 file for the cases that has mismatched inductive invariants
results = []
assert cases4re_generate_inv != [], "BUG: cases4re_generate_inv should not be empty! Check the copy operation!"
print(f"Start to generate smt2 for {len(cases4re_generate_inv)} aiger with mismated inv!")
for _, aig_to_generate_smt2 in enumerate(cases4re_generate_inv):
print(f"Start to re-generate smt2 for No.{_} aiger due to mismatched inv.cnf: {(aig_to_generate_smt2.split('/')[-1]).split('.aag')[0]}")
results.append(pool.apply_async(
call_proc,
(
f"python /data/guangyuh/coding_env/AIG2INV/AIG2INV_main/data2dataset/cex2smt2/collect.py --aag {aig_to_generate_smt2} --cnf {DATASET_FOLDER_PREFIX}/re-generate_inv/{aig_to_generate_smt2.split('/')[-1].split('.aag')[0]}/inv.cnf --num-cex {NUM_CEX}" ,
),
))
pool.close()
pool.join()
for result in results:
_, err = result.get()
# if err is not None, print it
if err != b'':
print(f"err: {err}")
else:
print("Congruatulations, no error in subprocess!")
print("Finish all the subprocess, all the mismatched error cases have re-generated smt2.")
# rename the mismatched_inv.log to mismatched_inv.log.{time_stamp}
shutil.move("/data/guangyuh/coding_env/AIG2INV/AIG2INV_main/log/error_handle/mismatched_inv.log", f"/data/guangyuh/coding_env/AIG2INV/AIG2INV_main/log/error_handle/mismatched_inv.log.{time.time()}")
def generate_pre_graph(simplification):
# generate pre-graph, constructed as json
smt2_dir = f"/data/guangyuh/coding_env/AIG2INV/AIG2INV_main/{DATASET_FOLDER_PREFIX}/bad_cube_cex2graph/expr_to_build_graph/"
# get all the subfolder name under smt2_dir
data4json_conversion = os.listdir(smt2_dir)
simplification = "true" if simplification in ["thorough", "deep", "moderate", "slight", "naive"] else "false"
pool = ThreadPool(multiprocessing.cpu_count())
results = []
with tqdm(total=len(data4json_conversion)) as pbar:
results.extend(
pool.apply_async(
call_proc,
(
# XXX: Double check before running the script -> did you recompile it and update it to the latest version?
f"/data/guangyuh/coding_env/AIG2INV/AIG2INV_main/data2dataset/smt2_cex2graph/model2graph {case_name} {smt2_dir} {simplification}",
),
callback=lambda _: update_progress_bar(pbar),
)
for case_name in data4json_conversion
)
pool.close()
pool.join()
for result in results:
_, err = result.get()
# if err is not None, print it
if err != b'':
print(f"err: {err}")
else:
print("Congruatulations, no error in subprocess!")
print("Finish all the subprocess, all the subset has generated json file to present DAG graph.")
def generate_post_graph():
# generate post-graph, serialization as pickle
json_dir = f"/data/guangyuh/coding_env/AIG2INV/AIG2INV_main/{DATASET_FOLDER_PREFIX}/bad_cube_cex2graph/expr_to_build_graph"
ground_truth_dir = f"/data/guangyuh/coding_env/AIG2INV/AIG2INV_main/{DATASET_FOLDER_PREFIX}/bad_cube_cex2graph/ground_truth_table"
pickle_file_name_prefix = f"/data/guangyuh/coding_env/AIG2INV/AIG2INV_main/{DATASET_FOLDER_PREFIX}/bad_cube_cex2graph/json_to_graph_pickle/"
# get all the subfolder name under expr_to_build_graph (expression to build graph)
data4pickle_conversion = os.listdir(json_dir)
pool = ThreadPool(2)
results = []
with tqdm(total=len(data4pickle_conversion)) as pbar:
results.extend(
pool.apply_async(
call_proc,
(
f"python /data/guangyuh/coding_env/AIG2INV/AIG2INV_main/data2dataset/smt2_cex2graph/json2networkx.py \
--json_file_path {json_dir}/{case_name} \
--ground_truth_path {ground_truth_dir}/{case_name} \
--pickle_file_name_prefix {pickle_file_name_prefix}",
),
callback=lambda _: update_progress_bar(pbar),
)
for case_name in data4pickle_conversion
)
pool.close()
pool.join()
for result in results:
_, err = result.get()
# if err is not None, print it
if err != b'':
print(f"err: {err}")
else:
print("Congruatulations, no error in subprocess!")
print("Finish all the subprocess, all the subset has generated serialization pickle for training.")
if __name__ == '__main__':
'''
---------------------------------------------------------
Attention:
If you are the first time to run this script, do not need to set any option.
---------------------------------------------------------
'''
parser = argparse.ArgumentParser()
# this option only for that you have .log with mismatched cases list
#parser.add_argument('--only_re_generate_inv', action='store_true', help='only re-generate the inv.cnf for the cases that has mismatched inductive invariants')
#parser.add_argument('--initialization_with_inv_generated', action='store_true', help='initialization with inv generated')
#parser.add_argument('--error_handle_with_ic3ref_basic_generalization', action='store_true', help='error handle with ic3ref basic generalization')
parser.add_argument('--run-mode', type=str, default="normal", help='run mode, normal or debug. Debug is for testing invariants correctness only')
parser.add_argument('--model-checker', type=str, default="ic3ref", help='model checker, ic3ref or abc')
#parser.add_argument('--dataset-folder-prefix', type=str, default="dataset", help='dataset folder prefix, the final aim generated folder, in the root folder')
parser.add_argument('--simplification-label', type=str, default="no_simplification", help='simplification label')
parser.add_argument('--benchmark', type=str, default=None, help='benchmark, which is used to generate the training dataset, in benchmark_folder')
parser.add_argument('--ground_truth_folder_prefix', type=str, default=None, help='ground truth folder prefix, the final aim generated folder, in the root folder')
parser.add_argument('--subset_range', type=str, default=0, help='subset range, the number of subset')
parser.add_argument('--num_cex', type=int, default=10, help='number of cex, the number of cex')
args = parser.parse_args()
'''
# remember to comment out Black List if you do not need it
args = parser.parse_args(['--model-checker', 'abc', \
#'--simplification-label', 'naive', \
'--benchmark', 'hwmcc2007_tip', \
'--ground_truth_folder_prefix', '/data/guangyuh/coding_env/AIG2INV/AIG2INV_main/clause-learning/data-collect/hwmcc07-7200-abc-result/output/tip/',\
'--subset_range', '0-22'
])
'''
# Global variable assignment
global DATASET_FOLDER_PREFIX
global SIMPLIFICATION_LABEL
global BENCHMARK
global GROUND_TRUTH_FOLDER_PREFIX
global SUBSET_RANGE
global NUM_CEX
NUM_CEX = args.num_cex
DATASET_FOLDER_PREFIX = f"dataset_{args.benchmark}_{args.model_checker}_{args.simplification_label}_{args.subset_range}"
SIMPLIFICATION_LABEL = "--thorough-simplification T" if args.simplification_label == "thorough" \
else "--deep-simplification T" if args.simplification_label == "deep" \
else "--moderate-simplification T" if args.simplification_label == "moderate"\
else "--slight-simplification T" if args.simplification_label == "slight"\
else "--naive-simplification T" if args.simplification_label == "naive"\
else ""
#assert SIMPLIFICATION_LABEL != "", "simplification label is not correct"
BENCHMARK = args.benchmark
GROUND_TRUTH_FOLDER_PREFIX = args.ground_truth_folder_prefix
SUBSET_RANGE = args.subset_range
# for testing only
# args = parser.parse_args(['--only_re_generate_inv','--error_handle_with_ic3ref_basic_generalization'])
'''
---------------------------------------------------------
(step 0: )only re-generate the inv.cnf for the cases that has mismatched inductive invariants?
(only has error log, and user want to generate the inv.cnf only)
---------------------------------------------------------
'''
# if args.only_re_generate_inv:
# args.error_handle_with_ic3ref_basic_generalization = "-b" if args.error_handle_with_ic3ref_basic_generalization else ""
# assert not os.path.exists("/data/guangyuh/coding_env/AIG2INV/AIG2INV_main/dataset"), "dataset/re-generate_inv/ folder already exists, please remove it first"
# os.mkdir("/data/guangyuh/coding_env/AIG2INV/AIG2INV_main/dataset/"); os.mkdir("/data/guangyuh/coding_env/AIG2INV/AIG2INV_main/dataset/re-generate_inv")
# generate_smt2_error_handle("/data/guangyuh/coding_env/AIG2INV/AIG2INV_main/log/error_handle/mismatched_inv.log", only_re_generate_inv=True, ic3ref_basic_generalization=args.error_handle_with_ic3ref_basic_generalization)
# exit(0)
'''
---------------------------------------------------------
(step 1: )change the directory name of "/data/guangyuh/coding_env/AIG2INV/AIG2INV_main/dataset" with time stamp
Choose mode:
1. Generate_smt2 for all cases -> default
2. Generate_smt2 for error cases -> with_re_generate_inv set to True in initialization()
Then, generate smt2 file for prediction (-> inducitve invariant)
---------------------------------------------------------
'''
dir_name = f"/data/guangyuh/coding_env/AIG2INV/AIG2INV_main/{DATASET_FOLDER_PREFIX}"
# if args.initialization_with_inv_generated:
# initialization(dir_name, with_re_generate_inv=True)
# generate_smt2_error_handle("/data/guangyuh/coding_env/AIG2INV/AIG2INV_main/log/error_handle/mismatched_inv.log")
# else:
initialization(dir_name, with_re_generate_inv=False)
# script folder: /data/guangyuh/coding_env/AIG2INV/AIG2INV_main/data2dataset/cex2smt2/collect.py
generate_smt2(args.run_mode,args.model_checker) # if mode is debug, the program will exit after inv checking
'''
---------------------------------------------------------
(step2: )generate graph file for training
---------------------------------------------------------
'''
# generate pre-graph (json format)
# script folder: /data/guangyuh/coding_env/AIG2INV/AIG2INV_main/data2dataset/smt2_cex2graph/model2graph
generate_pre_graph(args.simplification_label)
# generate post-graph (pickle format)
# script folder: /data/guangyuh/coding_env/AIG2INV/AIG2INV_main/data2dataset/smt2_cex2graph/json2networkx.py
# generate_post_graph()
print("Finish building data! Ready to train!")