-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
1028 lines (893 loc) · 48.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# load data extract from bad cube and predict it
import os
import sys
import torch
from tqdm import tqdm
import numpy as np
import torch.nn.functional as F
# append './train_neurograph/' to the path
sys.path.append(os.path.join(os.getcwd(), 'train_neurograph'))
# append './data2dataset/cex2smt2/' to the path
sys.path.append(os.path.join(os.getcwd(), 'data2dataset/cex2smt2'))
from data2dataset.cex2smt2.tCube import tCube
from train_neurograph.train import GraphDataset
# for old(small) cases
#from train_neurograph.neurograph_old import NeuroInductiveGeneralization
# for new(complicated/large) cases
from train_neurograph.neurograph import NeuroInductiveGeneralization
from data2dataset.cex2smt2.clause import Clauses
from data2dataset.cex2smt2.aigmodel import AAGmodel
from data2dataset.cex2smt2.aig2graph import AigGraph
from data2dataset.cex2smt2.cnfextract import ExtractCnf
# add "train_neurograph" to sys.path
import torch.nn as nn
from natsort import natsorted
import z3
import subprocess
import time
# add input arguments
import argparse
import shutil
import re
import concurrent.futures
import pickle
CASE_TO_RUN = 0
'''
---------------------------------------------------------
Checker to check if the predicted clauses is satisfiable
---------------------------------------------------------
'''
class CNF_Filter(ExtractCnf):
def __init__(self, aagmodel, clause, name, aig_location=None):
super(CNF_Filter, self).__init__(aagmodel, clause, name)
# self.init = aagmodel.init
# adjust to perform inductive generalization or not
self.perform_ig = False
# record the original aig location
self.aig_location = aig_location
self.check_and_reduce_res = True
def _solveRelative_upgrade(self, clauses_to_block):
# sourcery skip: extract-duplicate-method, inline-immediately-returned-variable
# not(clauses_to_block) is the counterexample (which is also call s)
# self.aagmodel.output is the bad state
# prop = safety property which is !bad
# init /\ s is SAT?
check_init = z3.sat
slv = z3.Solver()
slv.add(self.init) # init -> !s ?
slv.add(z3.Not((clauses_to_block)))
check_init = slv.check()
check_relative = z3.sat # init & !s & T -> !s' ?
cubePrime = z3.substitute(z3.substitute(z3.Not(clauses_to_block), self.v2prime), self.vprime2nxt)
s = z3.Solver()
s.add(clauses_to_block)
s.add(self.init)
s.add(cubePrime) # F[i - 1] and T and Not(badCube) and badCube'
check_relative = s.check()
if check_init == z3.unsat and check_relative == z3.unsat and self.perform_ig == False:
return 'pass the check'
if check_init == z3.unsat and check_relative == z3.unsat and self.perform_ig == True:
s_after_ig = self._inductive_generalization(clauses_to_block)
print('pass the check and generalize the clauses')
return s_after_ig
else:
return 'not pass'
def _inductive_generalization(self, clauses_to_block):
# performs unsat core generalization
# pass
# perform mic generalization
tcube2generalize = tCube(0)
tcube2generalize.cubeLiterals = clauses_to_block.children()[0].children()
return self._MIC(tcube2generalize)
def _unsatcore_reduce(self, q, frame):
# (( not(q) /\ F /\ T ) \/ init' ) /\ q' is unsat
slv = z3.Solver()
slv.set(unsat_core=True)
l = z3.Or(z3.And(z3.Not(q.cube()), frame), (z3.substitute(z3.substitute(self.init, self.v2prime), self.vprime2nxt)))
slv.add(l)
plist = []
for idx, literal in enumerate(q.cubeLiterals):
p = 'p'+str(idx)
slv.assert_and_track((z3.substitute(z3.substitute(literal, self.v2prime), self.vprime2nxt)), p)
plist.append(p)
res = slv.check()
if res == z3.sat:
model = slv.model()
print(model.eval(self.initprime))
assert False,'BUG: !s & F & T & s\' is not inductive or init\' & s\' is not inductive'
assert (res == z3.unsat)
core = slv.unsat_core()
for idx, p in enumerate(plist):
if z3.Bool(p) not in core:
q.cubeLiterals[idx] = True
return q
def _MIC(self, q: tCube):
sz = q.true_size()
# perform unsat core reduction first
self._unsatcore_reduce(q, frame=self.init)
print('unsatcore', sz, ' --> ', q.true_size())
q.remove_true()
if q.true_size() == 1: return q # no need to perform MIC
return q #FIXME: temporarily disable MIC
# maybe q can be reduced by MIC further
for i in range(len(q.cubeLiterals)):
if q.cubeLiterals[i] is True: #This true does not indicate the literals are true
continue
q1 = q.delete(i)
print(f'MIC try idx:{i}')
if self._down(q1):
q = q1
q.remove_true()
print (q)
return q
def _down(self, q: tCube):
while True:
print(q.true_size(), end=',')
s = z3.Solver()
s.push()
#s.add(And(self.frames[0].cube(), Not(q.cube())))
s.add(self.frames[0].cube())
s.add(q.cube())
#if unsat == s.check():
if z3.sat == s.check():
print('F')
return False
s.pop()
s.push()
s.add(z3.And(self.frames[q.t-1].cube(), z3.Not(q.cube()), self.trans.cube(), #TODO: Check here is t-1 or t
z3.substitute(z3.substitute(q.cube(), self.primeMap),self.inp_map))) # Fi-1 ! and not(q) and T and q'
if z3.unsat == s.check():
print('T')
return True
m = s.model()
has_removed = q.join(m)
s.pop()
assert (has_removed)
def _sort_passed_clauses(self,lines, passed_clauses):
'''
sort the passed clauses according to the number of literals
lines: the list of clauses
passed_clauses: the list of passed clauses
'''
# get the passed clauses list according to passed_clauses
passed_clauses = [lines[i+1] for i in passed_clauses]
# initialize a sorted list to store the clauses
passed_clauses_sorted = []
# strip the newline character
passed_clauses_sorted = [i.strip() for i in passed_clauses]
# make the clauses to list of string
passed_clauses_sorted = [i.split(' ') for i in passed_clauses_sorted]
# for every clause, smaller literals first
for clause in passed_clauses_sorted: clause.sort()
# sort the clauses according to first literal
passed_clauses_sorted.sort(key=lambda x: x[0])
# sort the clauses according to the length of the clauses and the number of literals
passed_clauses_sorted.sort(key=lambda x: (len(x), x))
# change to list of clauses to string, append the newline character
passed_clauses_sorted = [' '.join(i) + '\n' for i in passed_clauses_sorted]
return passed_clauses_sorted
def check_and_reduce(self):
'''
Check the predicted clauses, if passed, then dump it without generalization
check_and_reduce or check_and_generalize 2 options
choose one of the two options
'''
prop = z3.Not(self.aagmodel.output) # prop - safety property
passed_clauses = [i for i in range(len(self.clauses)) if self._solveRelative_upgrade(self.clauses[i]) == 'pass the check']
# process the inductive generalization of the passed clauses -> basic generalization (unsat core) and mic
# generalized_clauses = [i for i in range(len(passed_clauses)) if self._inductive_generalization(passed_clauses[i]) == 'generalized successfully']
Predict_Clauses_Before_Filtering = f'{self.aig_location}/{self.model_name}_inv_CTI_predicted.cnf'
Predict_Clauses_After_Filtering = f'{self.aig_location}/{self.model_name}_predicted_clauses_after_filtering.cnf'
#print(f"Dump the predicted clauses after filtering to {Predict_Clauses_After_Filtering}")
print("Finish dumping the predicted clauses after filtering passed clauses (solve relative checking)!!")
# copy the line in Predict_Clauses_Before_Filtering to Predict_Clauses_After_Filtering according to passed_clauses
with open(Predict_Clauses_Before_Filtering, 'r') as f:
lines = f.readlines()
if passed_clauses: #!=0
with open(Predict_Clauses_After_Filtering, 'w') as f:
f.write(f'unsat {len(passed_clauses)}' + '\n')
passed_and_sorted_clauses = self._sort_passed_clauses(lines, passed_clauses) # finish filtering the clauses, and sort the clauses
for clause in passed_and_sorted_clauses: f.write(clause)
else:
self.check_and_reduce_res = False
def check_and_generalize(self):
'''
check the predicted clause, if passed, then generalize it -> use unsat core and mic
check_and_reduce or check_and_generalize 2 options
choose one of the two options
'''
prop = z3.Not(self.aagmodel.output)
pass_and_generalized_clauses = [
self._solveRelative_upgrade(self.clauses[i])
for i in range(len(self.clauses))
]
# delete the clauses that are not passed, check its type, if string, then it is not passed
pass_and_generalized_clauses = [
clause for clause in pass_and_generalized_clauses if type(clause) != str
]
print("finish checking and generalizing the predicted clauses")
# begin to reduce the duplicated clauses
pass_and_generalized_clauses = [
list(t)
for t in {
tuple(
sorted(
cube.cubeLiterals,
key=lambda x: int(str((x).children()[0]).replace('v', '')) if (x).children()!=[] else int(str((x)).replace('v', ''))
)
)
for cube in pass_and_generalized_clauses
}
]
#pass_and_generalized_clauses = [tCube(original_s_3.t, cube_lt_lst) for cube_lt_lst in pass_and_generalized_clauses]
pass_and_generalized_clauses_converter = []
for _ in pass_and_generalized_clauses:
res = tCube(0)
res.cubeLiterals = _.copy()
pass_and_generalized_clauses_converter.append(res)
pass_and_generalized_clauses = pass_and_generalized_clauses_converter
Predict_Clauses_After_Filtering_and_Generalization = f'{self.aig_location}/{self.model_name}_predicted_clauses_after_filtering_and_generalization.cnf'
# write final_generate_res to Predict_Clauses_File
cubeliteral_to_str = lambda cube_literals: ','.join(map
(lambda x: str(x).replace('v','')
# if x is v2, v4, v6 ... rather than Not(v2), Not(v4), Not(v6) ...
if x.children() == []
else str(int(str(x.children()[0]).replace('v',''))+1),cube_literals))
if len(pass_and_generalized_clauses)!=0:
with open(Predict_Clauses_After_Filtering_and_Generalization,'w') as f:
# write the first line with basic info
f.write(f'unsat {len(pass_and_generalized_clauses)}' + '\n')
for clause in pass_and_generalized_clauses:
#FIXME: why every time the clauses are not the same? -> set is disordered
f.write((cubeliteral_to_str(clause.cubeLiterals)))
f.write('\n')
'''
-----------------------
Global Used Functions
-----------------------
'''
def subset_preproces():
'''
This program will copy all the aig files from {all_aig_folder} to {folder_for_prediction_result_store}
if the aig file has generated graph (which can be used for prediction) in {aig_with_preprocess_data}
all_aig_folder: the folder that contains all the aig files (will be filtered, only the aiger that has graph will be copied)
folder_for_prediction_result_store: used for comparision with original model checker
aig_with_preprocess_data: the folder that contains all the aig files that has been preprocessed (has graph)
'''
all_aig_folder=f"/data/guangyuh/coding_env/AIG2INV/AIG2INV_main/benchmark_folder/{BENCHMARK}"
folder_for_prediction_result_store=f"/data/guangyuh/coding_env/AIG2INV/AIG2INV_main/case4comp/{SELECTED_DATASET}_comp"
aig_with_preprocess_data = f"/data/guangyuh/coding_env/AIG2INV/AIG2INV_main/{SELECTED_DATASET}/bad_cube_cex2graph/expr_to_build_graph/"
if not os.path.exists(folder_for_prediction_result_store):
os.makedirs(folder_for_prediction_result_store)
else:
#assert False, "Delete the folder first! Re-run the code!"
# break the code
return
aig_file_list = []
#get all file names from all the subfolders
for root, dirs, files in os.walk(all_aig_folder):
for file in files:
if file.endswith(".aag"):
all_aig_folder = os.path.join(root, file)
aig_file_list.append(all_aig_folder)
#print(aig_file_list)
# get all folder name in big dataset
json_path = aig_with_preprocess_data
# get all files in the json_path
for root, _, files in os.walk(json_path):
files = [os.path.join(root, f) for f in files]
# remove the _{number}.pkl and use set to remove duplicate in files list
# Create the regular expression
# regex = re.compile(r'(.*)_[0-9]+\.pkl$')
# Apply the regular expression to the array elements
#output_array = [regex.match(element)[1] for element in files]
# Remove duplicate elements from the output array
#output_array = list(set(output_array))
#aig_with_processed_graph = [ _.split('/')[-1] for _ in output_array]
#create a folder for each file
for aig_path_in_benchmark in aig_file_list :
#if list(filter(lambda x: aig_path_in_benchmark.split('/')[-1].split('.aag')[0] in x, aig_with_processed_graph)) !=[] :
os.mkdir(f'{folder_for_prediction_result_store}/{aig_path_in_benchmark.split("/")[-1].split(".aag")[0]}')
# copy the aig file to the folder
shutil.copy(aig_path_in_benchmark, f'{folder_for_prediction_result_store}/{aig_path_in_benchmark.split("/")[-1].split(".aag")[0]}')
print('Finish copying all the aig files to the corresponding folders')
def get_dataset(selected_dataset):
assert os.path.exists(f"./{selected_dataset}"), "The dataset path does not exist!"
return selected_dataset
def compare_abc(aig_original_location, selected_aig_case, log_location=None):
#pass # WIP
# compare with abc
'''
modified abc located in /data/guangyuh/coding_env/AIG2INV/AIG2INV_main/utils/abc/abc
'''
# initialize a shell command
predicted_clauses_cnf = (f'{aig_original_location}/'+ f'{selected_aig_case}_predicted_clauses_after_filtering.cnf')
# copy the cnf file to current folder and rename to "inv.cnf"
shutil.copy(predicted_clauses_cnf, f'{aig_original_location}/inv.cnf')
originial_aiger_file = (f'{aig_original_location}/'+ f'{selected_aig_case}.aag')
# if .aig not exist, excute /data/guangyuh/coding_env/AIG2INV/AIG2INV_main/utils/aiger_tool_util/aigtoaig {selected_aig_case}.aag {selected_aig_case}.aig
if not os.path.exists(f'{aig_original_location}/{selected_aig_case}.aig'):
cmd = f"cd {aig_original_location} && /data/guangyuh/coding_env/AIG2INV/AIG2INV_main/utils/aiger_tool_util/aigtoaig {selected_aig_case}.aag {selected_aig_case}.aig"
# run the shell command without checking the output
subprocess.run(cmd,shell=True,stderr=subprocess.STDOUT)
cmd = f"cd /data/guangyuh/coding_env/AIG2INV/AIG2INV_main/{aig_original_location} && \
/data/guangyuh/coding_env/AIG2INV/AIG2INV_main/utils/abc/abc -c \"&r {selected_aig_case}.aig; &put; fold; pdr\""
# run the shell command, and store stream data in terminal output to a variable
start_time = time.monotonic()
try:
output = subprocess.check_output(cmd,shell=True,stderr=subprocess.STDOUT)
except subprocess.CalledProcessError as e: # normally we will arrive here
output = f"command '{e.cmd}' return with error (code {e.returncode}): {e.output}"
end_time = time.monotonic()
elapsed_time_for_nn_abc = end_time - start_time
# read output, and split it into lines by "\\n"
output = str(output).split('\\n')
# Find the last Level x line, and extract the x
last_level_nn_abc = ''
for line in output:
if 'unsat' in line:
last_level_nn_abc = line
assert last_level_nn_abc != '', 'No Level x line found'
last_level_nn_abc = last_level_nn_abc.split(' ')
last_level_nn_abc = last_level_nn_abc[2]
'''
original abc located in /data/guangyuh/coding_env/AIG2INV/AIG2INV_main/utils/abc/abc
'''
# trash the inv.cnf
os.remove(f"/data/guangyuh/coding_env/AIG2INV/AIG2INV_main/{aig_original_location}/inv.cnf")
# initialize a shell command
cmd = f"cd /data/guangyuh/coding_env/AIG2INV/AIG2INV_main/{aig_original_location} && \
/data/guangyuh/coding_env/AIG2INV/AIG2INV_main/utils/abc/abc -c \"&r {selected_aig_case}.aig; &put; fold; pdr\""
start_time = time.monotonic()
# run the shell command, and store stream data in terminal output to a variable
try:
output = subprocess.check_output(cmd,shell=True,stderr=subprocess.STDOUT)
except subprocess.CalledProcessError as e: # normally we will arrive here
output = f"command '{e.cmd}' return with error (code {e.returncode}): {e.output}"
end_time = time.monotonic()
elapsed_time_for_abc = end_time - start_time
# read output, and split it into lines by "\\n"
output = str(output).split('\\n')
# Find the last Level x line, and extract the x
last_level_abc = ''
for line in output:
if 'unsat' in line:
last_level_abc = line
assert last_level_abc != '', 'abc has not found a solution'
last_level_abc = last_level_abc.split(' ')
last_level_abc = last_level_abc[2]
# compare the last level
print('NN-abc finished solving ',originial_aiger_file.split('/')[-1])
if int(last_level_nn_abc) - int(last_level_abc) == 0:
print('NN-abc has not improved the result')
elif int(last_level_abc) - int(last_level_nn_abc) > 0 and elapsed_time_for_abc > elapsed_time_for_nn_abc:
print(
'NN-abc has been improved with ',
int(last_level_abc) - int(last_level_nn_abc),
' frames, and has converged ',
elapsed_time_for_abc - elapsed_time_for_nn_abc,
' seconds earlier',
)
elif int(last_level_abc) - int(last_level_nn_abc) < 0 and elapsed_time_for_abc > elapsed_time_for_nn_abc:
print(
'NN-abc has not reduced frames, but has converged ',
elapsed_time_for_abc - elapsed_time_for_nn_abc,
' seconds earlier',
)
elif int(last_level_abc) - int(last_level_nn_abc) > 0 and elapsed_time_for_abc < elapsed_time_for_nn_abc:
print(
'NN-abc has been improved with ',
int(last_level_abc) - int(last_level_nn_abc),
' frames',
)
else:
assert int(last_level_abc) - int(last_level_nn_abc) < 0 and elapsed_time_for_abc < elapsed_time_for_nn_abc, 'Something is wrong'
print(
'NN-abc is worse than abc. Increased ',
int(last_level_nn_abc) - int(last_level_abc),
' frames',
)
# open a file to store the result as table, column contains the following information:
# aig_case_name, last_level, last_level_ic3ref, elapsed_time_for_nn_ic3, elapsed_time_for_ic3ref
# if the file does not exist, create it
if not os.path.exists(log_location):
with open(log_location, 'w') as f:
f.write('case name, NN-ABC Frame, ABC Frame, NN-ABC Time, ABC Time\n')
with open(log_location, 'a+') as f:
if (
last_level_abc.isnumeric()
):
f.write(f'{originial_aiger_file.split("/")[-1].split(".aag")[0]}, {last_level_nn_abc}, {last_level_abc}, {elapsed_time_for_nn_abc}, {elapsed_time_for_abc}\n')
print('compare with abc done')
def compare_ic3ref(aig_original_location, selected_aig_case, ic3ref_basic_generalization="", nnic3_basic_generalization="", log_location=None):
# compare with ic3ref
'''
modified ic3ref located in /data/guangyuh/coding_env/AIG2INV/AIG2INV_main/utils/IC3ref/IC3
'''
# initialize a shell command
predicted_clauses_cnf = (f'{aig_original_location}/'+ f'{selected_aig_case}_predicted_clauses_after_filtering.cnf')
originial_aiger_file = (f'{aig_original_location}/'+ f'{selected_aig_case}.aag')
cmd = f'/data/guangyuh/coding_env/AIG2INV/AIG2INV_main/utils/IC3ref/IC3 -v {nnic3_basic_generalization} -f {predicted_clauses_cnf} < {originial_aiger_file}'
# run the shell command, and store stream data in terminal output to a variable
start_time = time.monotonic()
try:
output = subprocess.check_output(cmd,shell=True,stderr=subprocess.STDOUT)
except subprocess.CalledProcessError as e: # normally we will arrive here
output = f"command '{e.cmd}' return with error (code {e.returncode}): {e.output}"
end_time = time.monotonic()
elapsed_time_for_nn_ic3 = end_time - start_time
# read output, and split it into lines by "\\n"
output = output.split('\\n')
# Find the last Level x line, and extract the x
last_level = ''
for line in output:
if 'Level' in line:
last_level = line
assert last_level != '', 'No Level x line found'
last_level = last_level.split(' ')
last_level = last_level[1]
'''
original ic3ref located in /data/guangyuh/coding_env/AIG2INV/AIG2INV_main/utils/IC3ref/IC3ref
'''
# initialize a shell command
cmd = f'/data/guangyuh/coding_env/AIG2INV/AIG2INV_main/utils/IC3ref/IC3 {ic3ref_basic_generalization} -v < {originial_aiger_file}'
start_time = time.monotonic()
# run the shell command, and store stream data in terminal output to a variable
try:
output = subprocess.check_output(cmd,shell=True,stderr=subprocess.STDOUT)
except subprocess.CalledProcessError as e: # normally we will arrive here
output = f"command '{e.cmd}' return with error (code {e.returncode}): {e.output}"
end_time = time.monotonic()
elapsed_time_for_ic3ref = end_time - start_time
# read output, and split it into lines by "\\n"
output = output.split('\\n')
# Find the last Level x line, and extract the x
last_level_ic3ref = ''
for line in output:
if 'Level' in line:
last_level_ic3ref = line
assert last_level_ic3ref != '', 'ic3ref has not found a solution'
last_level_ic3ref = last_level_ic3ref.split(' ')
last_level_ic3ref = last_level_ic3ref[1]
# compare the last level
print('NN-IC3ref finished solving ',originial_aiger_file.split('/')[-1])
if last_level == last_level_ic3ref or not(last_level_ic3ref.isnumeric()): #true if last_level_ic3ref is a string
print('NN-IC3ref has not improved the result')
elif int(last_level_ic3ref) - int(last_level) > 0 and elapsed_time_for_ic3ref > elapsed_time_for_nn_ic3:
print(
'NN-IC3ref has been improved with ',
int(last_level_ic3ref) - int(last_level),
' frames, and has converged ',
elapsed_time_for_ic3ref - elapsed_time_for_nn_ic3,
' seconds earlier',
)
elif int(last_level_ic3ref) - int(last_level) < 0 and elapsed_time_for_ic3ref > elapsed_time_for_nn_ic3:
print(
'NN-IC3ref has not reduced frames, but has converged ',
elapsed_time_for_ic3ref - elapsed_time_for_nn_ic3,
' seconds earlier',
)
elif int(last_level_ic3ref) - int(last_level) > 0 and elapsed_time_for_ic3ref < elapsed_time_for_nn_ic3:
print(
'NN-IC3ref has been improved with ',
int(last_level_ic3ref) - int(last_level),
' frames',
)
else:
assert int(last_level_ic3ref) - int(last_level) < 0 and elapsed_time_for_ic3ref < elapsed_time_for_nn_ic3, "something wrong"
print(
'NN-IC3ref is worse than ic3ref. Increased ',
int(last_level) - int(last_level_ic3ref),
' frames',
)
# open a file to store the result as table, column contains the following information:
# aig_case_name, last_level, last_level_ic3ref, elapsed_time_for_nn_ic3, elapsed_time_for_ic3ref
# if the file does not exist, create it
if not os.path.exists(log_location):
with open(log_location, 'w') as f:
f.write('case name, NN-IC3 Frame, IC3ref Frame, NN-IC3 Time, IC3ref Time, NN-IC3-bg, IC3ref-bg\n')
with open(log_location, 'a+') as f:
# convert ic3ref_basic_generalization to 0 or 1
ic3ref_basic_generalization = 0 if ic3ref_basic_generalization=="" else 1
nnic3_basic_generalization = 0 if nnic3_basic_generalization=="" else 1
if (
last_level_ic3ref.isnumeric()
):
f.write(f'{originial_aiger_file.split("/")[-1].split(".aag")[0]}, {last_level}, {last_level_ic3ref}, {elapsed_time_for_nn_ic3}, {elapsed_time_for_ic3ref}, {nnic3_basic_generalization},{ic3ref_basic_generalization} \n')
print('compare with ic3ref done')
def sort_lists(cti_list, pclause_list):
sorted_cti = [sorted(sublist, key=int) for sublist in cti_list]
sorted_pclauses = [sorted(sublist, key=int) for sublist in pclause_list]
sorted_cti = sorted(sorted_cti, key=lambda x: x[0])
sorted_pclauses = sorted(sorted_pclauses, key=lambda x: x[0])
return sorted_cti, sorted_pclauses
def minimize_cti_by_pclause(CTI, pclauses):
CTI, pclauses = sort_lists(CTI, pclauses)
result = []
#found = False
for cti_sublist in CTI:
for pc_sublist in pclauses:
if pc_sublist in result: continue
if set(pc_sublist).issubset(cti_sublist):
result.append(pc_sublist)
#found = True
# break if naive minimization is found
#if found: break
#if not found:
modified_cti_sublist = cti_sublist.copy()
for i, num in enumerate(modified_cti_sublist):
if int(num) % 2 == 1:
modified_cti_sublist[i] = str(int(num) - 1)
for pc_sublist in pclauses:
if pc_sublist in result:
continue
if set(pc_sublist).issubset(modified_cti_sublist):
recovered_sublist = [
str(int(modified_cti_sublist[i])) if int(modified_cti_sublist[i]) == int(cti_sublist[i]) else cti_sublist[i]
for i in range(len(modified_cti_sublist))
]
result.append([recovered_sublist[i] for i in range(len(recovered_sublist)) if recovered_sublist[i] in pc_sublist or str(int(recovered_sublist[i])-1) in pc_sublist])
return result
def find_missing_pickles(json_folder, pickle_folder):
json_files = [f for f in os.listdir(json_folder) if f.endswith('.json')]
pickle_files = [f for f in os.listdir(pickle_folder) if f.endswith('.pkl')]
missing_indices = []
for json_file in json_files:
base_name = json_file.split('.json')[0] # Remove the file extension
corresponding_pickle = f"{base_name}.pkl"
if corresponding_pickle not in pickle_files:
index = int(base_name.split('_')[-1]) # Extract the index from the file name
missing_indices.append(index)
return missing_indices
def make_predictions(probs, threshold):
return (probs[:, 1] > threshold).cpu().numpy().astype(np.int64)
def generate_predicted_inv_dgl(threshold, aig_case_name, NN_model,aig_original_location_prefix,args):
if not args.re_predict: return True
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
with open(f"/data/guangyuh/coding_env/AIG2INV/AIG2INV_main/train_gcn/{(aig_original_location_prefix.split('/'))[1].split('_comp')[0]}.pickle", 'rb') as f:
graph_list = pickle.load(f)
from train_gcn.GNN_Model import GCNModel, BWGNN
model = BWGNN(128,128,2).to(device)
if torch.cuda.is_available():
map_location=lambda storage, loc: storage.cuda()
else:
map_location='cpu'
model.load_state_dict(torch.load( f"/data/guangyuh/coding_env/AIG2INV/AIG2INV_main/train_gcn/{(aig_original_location_prefix.split('/'))[1].split('_comp')[0]}.pt",map_location=map_location))
model.eval()
# load data
from train_gcn.Dataset import CustomGraphDataset
# Find all the graph in graph list that graph_list[x][0].name is start with aig_case_name
graph_list = [graph for graph in graph_list if graph[0].name.startswith(aig_case_name)]
if not graph_list: return False # if no graph found, return False
dataset = CustomGraphDataset(graph_list,split='test')
final_predicted_clauses = []
for idx, dgl_graph in enumerate(dataset):
dgl_graph = dgl_graph.to(device)
logits = model(dgl_graph, dgl_graph.ndata['feat'])
if threshold is not None:# use threshold to make prediction
probs = F.softmax(logits, dim=1)
pred = make_predictions(probs, threshold=threshold)
else:
# directly use the max probability as prediction
pred = logits.argmax(1).cpu().numpy()
true_labels = dgl_graph.ndata['label'].cpu().numpy()
output = [
(data['application'])
for idx, (_, data) in enumerate(
list(graph_list[idx][0].nodes(data=True))
)
if data['type'] == 'variable'
and data['application'].startswith('v')
and dgl_graph.ndata['train_mask'].cpu().numpy()[idx]
and pred[idx]==1
]
real_output = [
(data['application'])
for idx, (_, data) in enumerate(
list(graph_list[idx][0].nodes(data=True))
)
if data['type'] == 'variable'
and data['application'].startswith('v')
and dgl_graph.ndata['train_mask'].cpu().numpy()[idx]
and true_labels[idx]==1
]
#print(f"Predicted Invariant: {output}")
#print(f"Real Invariant: {real_output}")
final_predicted_clauses.append(output)
return dump_predicted_clauses(
aig_case_name,
f"./{SELECTED_DATASET}",
aig_original_location_prefix,
final_predicted_clauses,
)
def dump_predicted_clauses(selected_aig_case, extracted_bad_cube_prefix,aig_original_location_prefix, final_predicted_clauses):
# print final_predicted_clauses line by line
# for clause in final_predicted_clauses: print(clause) #TAG: uncomment this line to print the predicted clauses
# parse file from aig original location
aig_original_location = f'{aig_original_location_prefix}/{selected_aig_case}' #TAG: adjust the aig original location
# number_of_subset = 1 #TAG: adjust the number of subset
# aig_original_location = f'benchmark_folder/hwmcc2007/subset{number_of_subset}/{selected_aig_case}'
CTI_file = f'{extracted_bad_cube_prefix}/bad_cube_cex2graph/cti_for_inv_map_checking/{selected_aig_case}/{selected_aig_case}_inv_CTI.txt'
Predict_Clauses_File = f'{aig_original_location}/{selected_aig_case}_inv_CTI_predicted.cnf'
if os.path.exists(CTI_file):
with open(CTI_file,'r') as f:
original_CTI = f.readlines()
else: return False
# remove the last '\n'
original_CTI = [i[:-1] for i in original_CTI]
# split original_CTI into list with comma
original_CTI = [clause.split(',') for clause in original_CTI]
# filter the original_CTI with final_predicted_clauses
# first, convert final_predicted_clauses to a list that without 'v'
final_predicted_clauses = [[literal.replace('v','') for literal in clause] for clause in final_predicted_clauses]
final_generate_res = [] # this will be side loaded to ic3ref
print(f'{selected_aig_case} is generating predicted clauses...')
assert final_predicted_clauses, 'Final predicted clauses is empty!'
# insert the missing clause in the original_CTI to final_predicted_clauses
'''
Directly insert the missing clause in the original_CTI?
'''
# for i in missing_indices_of_graph: final_predicted_clauses.insert(i,original_CTI[i])
'''
for i in range(len(original_CTI)):
# generalize the original_CTI[i] with final_predicted_clauses[i]
# if the literal in original_CTI[i] is not in final_predicted_clauses[i], then remove it
cls = [literal for literal in original_CTI[i] if literal in final_predicted_clauses[i] or str(int(literal)-1) in final_predicted_clauses[i]]
if not cls: cls = original_CTI[i]
final_generate_res.append(cls)
'''
final_generate_res = minimize_cti_by_pclause(original_CTI, final_predicted_clauses)
if not final_generate_res: # generate failed -> this is not possible..
final_generate_res = final_predicted_clauses
# directly use (ignore `NOT` literal condition )
# final_generate_res = final_predicted_clauses
# remove the duplicate clause in final_generate_res
# be careful, using set will change the order of the list
final_generate_res = [
list(t) for t in {tuple(element) for element in final_generate_res}
]
# write final_generate_res to Predict_Clauses_File
with open(Predict_Clauses_File,'w') as f:
# write the first line with basic info
f.write(f'unsat {len(final_generate_res)}' + '\n')
for clause in final_generate_res:
f.write(' '.join(clause))
f.write('\n')
# check the final_generate_res with ic3ref -> whether it is fulfill the property
case = selected_aig_case
aag_name = f"./{aig_original_location}/{case}.aag"
cnf_name = f"./{aig_original_location}/{case}_inv_CTI_predicted.cnf"
model_name = case
m = AAGmodel()
m.from_file(aag_name)
predicted_clauses = Clauses(fname=cnf_name, num_sv = len(m.svars), num_input = len(m.inputs))
predicted_clauses_filter = CNF_Filter(aagmodel = m, clause = predicted_clauses ,name = model_name, aig_location=aig_original_location)
predicted_clauses_filter.check_and_reduce()
#predicted_clauses_filter.check_and_generalize()#FIXME: Encounter error, the cnf file will become empty
if predicted_clauses_filter.check_and_reduce_res:
return True
else:
return False
#return aig_original_location, selected_aig_case
#compare_ic3ref(aig_original_location=aig_original_location,selected_aig_case=selected_aig_case)
def generate_predicted_inv(threshold, aig_case_name, NN_model,aig_original_location_prefix):
sigmoid = nn.Sigmoid()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# choose the dataset that you want to test
extracted_bad_cube_prefix = get_dataset(selected_dataset=SELECTED_DATASET)
# choose the case that you want to test
selected_aig_case = aig_case_name
extracted_bad_cube_after_post_processing = GraphDataset(f"{extracted_bad_cube_prefix}/bad_cube_cex2graph/json_to_graph_pickle/",mode='predict',case_name=selected_aig_case,device=device)
if len(extracted_bad_cube_after_post_processing) == 0: # not a valid case, skip
# print log
with open("log/error_handle/graph_pickle_incomplete.log", "a+") as fout: fout.write(f"Error: {aig_case_name} has no graph generation from json to pickle \n")
fout.close()
return False
# Has error in json_to_graph_pickle
'''
if len(extracted_bad_cube_after_post_processing)!= len(open(f'{extracted_bad_cube_prefix}/bad_cube_cex2graph/cti_for_inv_map_checking/{selected_aig_case}/{selected_aig_case}_inv_CTI.txt').readlines()):
# print log
with open("log/error_handle/graph_pickle_incomplete.log", "a+") as fout: fout.write(f"Error: {aig_case_name} has incomplete graph generation from json to pickle \n")
fout.close()
#XXX: Double check before running the script
#sys.exit(0)
return False
'''
# missing_indices_of_graph -> constant false cex that has no need to generate graph
# missing_indices_of_graph = find_missing_pickles(f"{extracted_bad_cube_prefix}/bad_cube_cex2graph/expr_to_build_graph/{aig_case_name}",f"{extracted_bad_cube_prefix}/bad_cube_cex2graph/json_to_graph_pickle/")
#print(missing_indices_of_graph)
# load pytorch model
net = NeuroInductiveGeneralization()
# choose the NN model that you want to test
#NN_model_to_load = 'neuropdr_2023-01-05_15:53:59_lowest_training_loss.pth.tar' #TAG: adjust NN model name here
#NN_model_to_load = 'neuropdr_2022-11-24_11:30:11_last.pth.tar'
#NN_model_to_load = 'neuropdr_2023-01-06_07:56:57_last.pth.tar'
NN_model_to_load = NN_model
model = torch.load(f'./neurograph_model/{NN_model_to_load}',map_location=device)
# for small case
#model = torch.load(f'./neurograph_model/neuropdr_2022-11-24_11:30:11_last.pth.tar',map_location=device)
# for large case
#model = torch.load('./neurograph_model/neuropdr_2022-11-28_15:23:41_last.pth.tar',map_location=device)
net.load_state_dict(model['state_dict'])
net = net.to(device)
net.eval()
# predict, load extracted_bad_cube_after_post_processing one by one
final_predicted_clauses = []
for i in tqdm(range(len(extracted_bad_cube_after_post_processing))):
data = extracted_bad_cube_after_post_processing[i]
q_index = data[0]['refined_output']
with torch.no_grad(): outputs = net(data)
torch_select = torch.Tensor(q_index).to(device).int()
outputs = sigmoid(torch.index_select(outputs, 0, torch_select))
preds = torch.where(outputs > threshold, torch.ones(outputs.shape).to(device), torch.zeros(outputs.shape).to(device))
# choose the state varible based on the preds, and select the
# element based on torch_select
svar_lst = [(data[1][data[0]['n_nodes']:])[i] for i in torch_select.tolist()]
# convert svar_lst to svar_lst[i]['data']['application'], i based on the preds
# print svar_lst[i]['data']['application'] in list
final_predicted_clauses.append([svar_lst[i]['data']['application'] for i in range(len(preds)) if preds[i] == 1])
dump_predicted_clauses(selected_aig_case,extracted_bad_cube_prefix,aig_original_location_prefix,final_predicted_clauses)
def compare_inv_and_draw_table(threshold, NN_model, aig_with_predicted_location_prefix, aig_without_predicted_location_prefix):
pass
def extract_benchmark(s):
pattern = r'dataset_((?:(?!_abc|_ic3ref).)+)'
match = re.search(pattern, s)
if match:
return match.group(1)
else:
return None
def update_progress_bar(pbar):
pbar.update(1)
if __name__ == "__main__":
global SELECTED_DATASET
global BENCHMARK
# input arguments to adjust the test case, thershold, and model
parser = argparse.ArgumentParser()
parser.add_argument('--threshold', type=float, default=None, help='threshold for the output of the NN model')
#parser.add_argument('--compare_inv', action='store_true', help='compare the inv with ic3ref')
#parser.add_argument('--aig-case-folder-prefix-for-prediction', type=str, default=None, help='case folder, use for test all cases in the folder, for example: benchmark_folder/hwmcc2007')
#parser.add_argument('--aig-case-folder-prefix-for-ic3ref', type=str, default=None, help='case folder, contains all ic3ref produced inv.cnf, for example: benchmark_folder/hwmcc2007')
parser.add_argument('--compare_with_ic3ref_basic_generalization', action='store_true', help='compare with ic3ref basic generalization')
parser.add_argument('--compare_with_nnic3_basic_generalization', action='store_true', help='compare with nnic3 basic generalization')
parser.add_argument('--aig-case-name', type=str, default=None, help='case name, use for test single case, for example: cmu.dme1.B')
#XXX: Double check before running the script
parser.add_argument('--NN-model', type=str, default='neuropdr_2023-01-06_07:56:57_last.pth.tar', help='model name')
#parser.add_argument('--benchmark', type=str, default='2007', help='benchmark folder (used to filter the dataset), will convert to hwmcc{benchmark}_all')
parser.add_argument('--gpu-id', type=str, default='1', help='gpu id')
parser.add_argument('--compare_with_ic3ref', action='store_true', help='compare with ic3ref')
parser.add_argument('--compare_with_abc', action='store_true', help='compare with abc')
parser.add_argument('--selected-built-dataset', type=str, default='big', help='selected dataset to predict the clauses (dataset has been built from build_data.py)')
parser.add_argument('--re-predict', action='store_true', help='re-predict the clauses')
parser.add_argument('--log-location', type=str, default=None, help='log location, in ./log/')
args = parser.parse_args()
# for test only
'''
#XXX: Double check before running the script
args = parser.parse_args([
'--threshold', '0.5',
#'--aig-case-name', 'eijk.S1423.S', #should has huge improvement
'--aig-case-name', 'vgasim_imgfifo-p089',
#'--aig-case-name', 'nusmv.guidance^6.C',
#'--aig-case-folder-prefix-for-prediction', 'benchmark_folder/hwmcc2007_big_comp_for_prediction',
'--NN-model', 'neuropdr_2023-01-06_07:56:51_last.pth.tar',
'--gpu-id', '1',
'--compare_with_ic3ref',
#'--compare_with_abc',
#'--selected-built-dataset', 'dataset_hwmcc2007_all_no_simplification_23',
'--selected-built-dataset', 'dataset_hwmcc2020_all_only_unsat_ic3ref_no_simplification_0-38',
'--log-location', 'log/compare_with_ic3ref_hwmcc2020.csv'
'--re-predict'
])
'''
'''
args = parser.parse_args([
#'--threshold', '0.5',
'--selected-built-dataset', 'dataset_hwmcc2020_all_only_unsat_ic3ref_no_simplification_0-38',
#'--selected-built-dataset', 'dataset_hwmcc2020_all_only_unsat_ic3ref_no_simplification_0-38',
#'--NN-model', 'neuropdr_2023-01-06_07:56:51_last.pth.tar',
'--gpu-id', '0',
'--compare_with_ic3ref',
'--re-predict'])
'''
#assert args.log_location is not None, 'log location is required'
args.compare_with_ic3ref_basic_generalization = "-b" if args.compare_with_ic3ref_basic_generalization else ""
args.compare_with_nnic3_basic_generalization = "-b" if args.compare_with_nnic3_basic_generalization else ""
BENCHMARK = extract_benchmark(args.selected_built_dataset)
SELECTED_DATASET = args.selected_built_dataset
aig_case_folder_prefix_for_prediction = f"case4comp/{SELECTED_DATASET}_comp"
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
'''
----------------- initialize the dataset -----------------
'''
# initialize the dataset for validation?
#subset_preproces()
subset_preproces()
# exit(0)
'''
----------------- draw conclusion test -----------------
'''
# compare the inv with ic3ref - draw conclusion table
# if args.compare_inv:
# compare_inv_and_draw_table(threshold=args.threshold, NN_model=args.NN_model, aig_with_predicted_location_prefix=aig_case_folder_prefix_for_prediction, aig_without_predicted_location_prefix=args.aig_case_folder_prefix_for_ic3ref)
# exit(0)
'''
------------------ test single/all case -----------------
'''
# test single case
if args.aig_case_name is not None:
generate_predicted_inv_success = (
True
if (
os.path.exists(
f'{aig_case_folder_prefix_for_prediction}/{args.aig_case_name}/{args.aig_case_name}_predicted_clauses_after_filtering.cnf'
) and not args.re_predict
)
else generate_predicted_inv_dgl(
threshold=args.threshold,
aig_case_name=args.aig_case_name,
NN_model=args.NN_model,
aig_original_location_prefix=aig_case_folder_prefix_for_prediction,
args = args
)
)
# if the inv is generated, then compare it with ic3ref or abc, if fail, we skip it
if generate_predicted_inv_success and args.compare_with_abc:
compare_abc(f'{aig_case_folder_prefix_for_prediction}/{args.aig_case_name}', f'{args.aig_case_name}',args.log_location)
elif generate_predicted_inv_success and args.compare_with_ic3ref:
compare_ic3ref(f'{aig_case_folder_prefix_for_prediction}/{args.aig_case_name}', f'{args.aig_case_name}',args.compare_with_ic3ref_basic_generalization,args.compare_with_nnic3_basic_generalization,args.log_location)
else: # test all cases in specified folder
# only give aig case folder, not define the aig case name, then test all cases in the folder
# get all the folder name in the aig_case_folder
aig_case_list = [ f.path for f in os.scandir(aig_case_folder_prefix_for_prediction) if f.is_dir() ]
async_compare_ic3ref = []
async_compare_abc = []
with tqdm(total=len(aig_case_list)) as pbar:
for aig_case in aig_case_list:
print("Begin to test case: ", aig_case.split('/')[-1], "...")
#if not(os.path.exists(f'{aig_case_folder_prefix_for_prediction}/{aig_case.split('/')[-1]}/{args.aig_case_name}_predicted_clauses_after_filtering.cnf')):
generate_predicted_inv_success = (
True
if (
os.path.exists(
f'{aig_case_folder_prefix_for_prediction}/{aig_case.split("/")[-1]}/{aig_case.split("/")[-1]}_predicted_clauses_after_filtering.cnf'
) and not args.re_predict # exist file and I don't want to re-genereate it
)
else generate_predicted_inv_dgl(# generate the inv again
threshold=args.threshold,
aig_case_name=aig_case.split('/')[-1],
NN_model=args.NN_model,
aig_original_location_prefix=aig_case_folder_prefix_for_prediction,
args=args
)
)
# begin to compare the inv with ic3ref or abc
# if generate_predicted_inv_success and args.compare_with_abc and args.re_predict:
# compare_abc(f"{aig_case_folder_prefix_for_prediction}/{aig_case.split('/')[-1]}", f"{aig_case.split('/')[-1]}",args.log_location)
# elif generate_predicted_inv_success and args.compare_with_ic3ref and args.re_predict:
# compare_ic3ref(f"{aig_case_folder_prefix_for_prediction}/{aig_case.split('/')[-1]}", f"{aig_case.split('/')[-1]}",args.compare_with_ic3ref_basic_generalization,args.compare_with_nnic3_basic_generalization,args.log_location)
if generate_predicted_inv_success and args.compare_with_abc:
async_compare_abc.append(aig_case)
elif generate_predicted_inv_success and args.compare_with_ic3ref:
async_compare_ic3ref.append(aig_case) ; CASE_TO_RUN += 1
update_progress_bar(pbar)
print("Total case to run in final: ", CASE_TO_RUN)
# async compare with ic3ref
if async_compare_ic3ref:
with concurrent.futures.ProcessPoolExecutor(max_workers=64) as executor:
for aig_case in async_compare_ic3ref: