|
231 | 231 | bytes_for_array = bits_for_arrays/8. |
232 | 232 |
|
233 | 233 | n_groups = np.floor(bytes_for_array/RAM_to_use) # number of full groups |
| 234 | +leftover_voxels = np.mod(n_voxels, n_groups) |
234 | 235 |
|
235 | | -<<<<<<< HEAD |
236 | 236 | print('Splitting data into %d groups with %d leftover voxels' % |
237 | 237 | (int(n_groups), int(leftover_voxels))) |
238 | | -======= |
239 | | -voxels_per_group = np.floor(n_voxels/n_groups) |
240 | | -leftover_voxels = n_voxels - (voxels_per_group * n_groups) |
241 | 238 |
|
242 | 239 |
|
243 | | ->>>>>>> c3fce94954003781aba5993326e18ceca49ce2a4 |
| 240 | +grouped_voxels = n_voxels - leftover_voxels |
244 | 241 |
|
245 | | - |
246 | | - |
247 | | -<<<<<<< HEAD |
248 | 242 | voxels_per_group = grouped_voxels/n_groups |
249 | | - |
250 | | -======= |
251 | | -print('Splitting data into %d groups with %d leftover voxels' %(int(n_groups),int(leftover_voxels)) |
252 | | - |
253 | | -#leftover_voxels = np.mod(n_voxels, n_groups) |
254 | | -#grouped_voxels = n_voxels - leftover_voxels |
255 | | -#voxels_per_group = grouped_voxels/n_groups |
256 | | - |
257 | | ->>>>>>> c3fce94954003781aba5993326e18ceca49ce2a4 |
258 | 243 | #============================================================================== |
259 | 244 | # %% BUILD MP CONTROLLER |
260 | 245 | #============================================================================== |
|
314 | 299 | group) * int(voxels_per_group):int(group + 1) * int(voxels_per_group)] = grain_map_group_list |
315 | 300 |
|
316 | 301 | confidence_map_list[int( |
317 | | -<<<<<<< HEAD |
318 | 302 | abcd) * int(voxels_per_group):int(abcd + 1) * int(voxels_per_group)] = confidence_map_group_list |
319 | 303 | del raw_confidence |
320 | 304 |
|
321 | 305 | if leftover_voxels > 0: |
322 | 306 | #now for the leftover voxels |
323 | | -======= |
324 | | - group) * int(voxels_per_group):int(group + 1) * int(voxels_per_group)] = confidence_map_group_list |
325 | | - |
326 | | - #now for the leftover voxels |
327 | | - if leftover_voxels != 0: |
328 | | ->>>>>>> c3fce94954003781aba5993326e18ceca49ce2a4 |
329 | 307 | voxels_to_test = test_crds[int( |
330 | 308 | n_groups) * int(voxels_per_group):, :] |
331 | 309 | raw_confidence = nfutil.test_orientations( |
332 | 310 | image_stack, experiment, voxels_to_test, controller, multiprocessing_start_method) |
333 | 311 | grain_map_group_list, confidence_map_group_list = nfutil.process_raw_confidence( |
334 | 312 | raw_confidence, id_remap=nf_to_ff_id_map, min_thresh=0.0) |
335 | | -<<<<<<< HEAD |
336 | 313 |
|
337 | 314 | grain_map_list[int( |
338 | 315 | n_groups) * int(voxels_per_group):] = grain_map_group_list |
|
346 | 323 |
|
347 | 324 |
|
348 | 325 | del controller |
349 | | -======= |
350 | | - |
351 | | - grain_map_list[int( |
352 | | - n_groups) * int(voxels_per_group):] = grain_map_group_list |
353 | | - |
354 | | - confidence_map_list[int( |
355 | | - n_groups) * int(voxels_per_group):] = confidence_map_group_list |
356 | | - |
357 | | - #reshape them |
358 | | - grain_map = grain_map_list.reshape(Xs.shape) |
359 | | - confidence_map = confidence_map_list.reshape(Xs.shape) |
360 | | - |
361 | | ->>>>>>> c3fce94954003781aba5993326e18ceca49ce2a4 |
362 | | - |
363 | 326 |
|
364 | 327 | #============================================================================== |
365 | 328 | # %% POST PROCESS W WHEN TOMOGRAPHY HAS BEEN USED |
|
0 commit comments