-
Notifications
You must be signed in to change notification settings - Fork 177
/
trainval_net.py
264 lines (207 loc) · 9.75 KB
/
trainval_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# --------------------------------------------------------
# Pytorch multi-GPU Faster R-CNN
# Licensed under The MIT License [see LICENSE for details]
# Written by Jiasen Lu, Jianwei Yang, based on code from Ross Girshick
# Modified by Peiliang Li for Stereo RCNN train
# --------------------------------------------------------
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import _init_paths
import os
import sys
import numpy as np
import argparse
import time
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
from torch.utils.data.sampler import Sampler
from roi_data_layer.roidb import combined_roidb
from roi_data_layer.roibatchLoader import roibatchLoader
from model.utils.config import cfg
from model.utils.net_utils import weights_normal_init, save_net, load_net, \
adjust_learning_rate, save_checkpoint, clip_gradient
from model.stereo_rcnn.resnet import resnet
def parse_args():
'''
Parse input arguments
'''
parser = argparse.ArgumentParser(description='Train the Stereo R-CNN network')
parser.add_argument('--start_epoch', dest='start_epoch',
help='starting epoch',
default=1, type=int)
parser.add_argument('--epochs', dest='max_epochs',
help='number of epochs to train',
default=20, type=int)
parser.add_argument('--save_dir', dest='save_dir',
help='directory to save models', default="models_stereo",
type=str)
parser.add_argument('--nw', dest='num_workers',
help='number of worker to load data',
default=8, type=int)
parser.add_argument('--bs', dest='batch_size',
help='batch_size',
default=1, type=int)
# config optimization
parser.add_argument('--lr_decay_step', dest='lr_decay_step',
help='step to do learning rate decay, unit is epoch',
default=5, type=int)
parser.add_argument('--lr_decay_gamma', dest='lr_decay_gamma',
help='learning rate decay ratio',
default=0.1, type=float)
# resume trained model
parser.add_argument('--r', dest='resume',
help='resume checkpoint or not',
default=False, type=bool)
parser.add_argument('--checkepoch', dest='checkepoch',
help='checkepoch to load model',
default=1, type=int)
parser.add_argument('--checkpoint', dest='checkpoint',
help='checkpoint to load model',
default=6477, type=int)
args = parser.parse_args()
return args
class sampler(Sampler):
def __init__(self, train_size, batch_size):
self.num_data = train_size
self.num_per_batch = int(train_size / batch_size)
self.batch_size = batch_size
self.range = torch.arange(0,batch_size).view(1, batch_size).long()
self.leftover_flag = False
if train_size % batch_size:
self.leftover = torch.arange(self.num_per_batch*batch_size, train_size).long()
self.leftover_flag = True
def __iter__(self):
rand_num = torch.randperm(self.num_per_batch).view(-1,1) * self.batch_size
self.rand_num = rand_num.expand(self.num_per_batch, self.batch_size) + self.range
self.rand_num_view = self.rand_num.view(-1)
if self.leftover_flag:
self.rand_num_view = torch.cat((self.rand_num_view, self.leftover),0)
return iter(self.rand_num_view)
def __len__(self):
return self.num_data
if __name__ == '__main__':
args = parse_args()
print('Using config:')
np.random.seed(cfg.RNG_SEED)
imdb, roidb, ratio_list, ratio_index = combined_roidb('kitti_train')
train_size = len(roidb)
print('{:d} roidb entries'.format(len(roidb)))
output_dir = args.save_dir + '/'
if not os.path.exists(output_dir):
print('save dir', output_dir)
os.makedirs(output_dir)
log_info = open((output_dir + 'trainlog.txt'), 'w')
def log_string(out_str):
log_info.write(out_str+'\n')
log_info.flush()
print(out_str)
sampler_batch = sampler(train_size, args.batch_size)
dataset = roibatchLoader(roidb, ratio_list, ratio_index, args.batch_size, \
imdb.num_classes, training=True)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size,
sampler=sampler_batch, num_workers=args.num_workers)
# initilize the tensor holder here.
im_left_data = Variable(torch.FloatTensor(1).cuda())
im_right_data = Variable(torch.FloatTensor(1).cuda())
im_info = Variable(torch.FloatTensor(1).cuda())
num_boxes = Variable(torch.LongTensor(1).cuda())
gt_boxes_left = Variable(torch.FloatTensor(1).cuda())
gt_boxes_right = Variable(torch.FloatTensor(1).cuda())
gt_boxes_merge = Variable(torch.FloatTensor(1).cuda())
gt_dim_orien = Variable(torch.FloatTensor(1).cuda())
gt_kpts = Variable(torch.FloatTensor(1).cuda())
# initilize the network here.
stereoRCNN = resnet(imdb.classes, 101, pretrained=True)
stereoRCNN.create_architecture()
lr = cfg.TRAIN.LEARNING_RATE
uncert = Variable(torch.rand(6).cuda(), requires_grad=True)
torch.nn.init.constant(uncert, -1.0)
params = []
for key, value in dict(stereoRCNN.named_parameters()).items():
if value.requires_grad:
if 'bias' in key:
params += [{'params':[value],'lr':lr*(cfg.TRAIN.DOUBLE_BIAS + 1), \
'weight_decay': cfg.TRAIN.BIAS_DECAY and cfg.TRAIN.WEIGHT_DECAY or 0}]
else:
params += [{'params':[value],'lr':lr, 'weight_decay': cfg.TRAIN.WEIGHT_DECAY}]
params += [{'params':[uncert], 'lr':lr}]
optimizer = torch.optim.SGD(params, momentum=cfg.TRAIN.MOMENTUM)
if args.resume:
load_name = os.path.join(output_dir,
'stereo_rcnn_{}_{}.pth'.format(args.checkepoch, args.checkpoint))
log_string('loading checkpoint %s' % (load_name))
checkpoint = torch.load(load_name)
args.start_epoch = checkpoint['epoch']
stereoRCNN.load_state_dict(checkpoint['model'])
lr = optimizer.param_groups[0]['lr']
uncert.data = checkpoint['uncert']
log_string('loaded checkpoint %s' % (load_name))
stereoRCNN.cuda()
iters_per_epoch = int(train_size / args.batch_size)
for epoch in range(args.start_epoch, args.max_epochs + 1):
stereoRCNN.train()
start = time.time()
if epoch % (args.lr_decay_step + 1) == 0:
adjust_learning_rate(optimizer, args.lr_decay_gamma)
lr *= args.lr_decay_gamma
data_iter = iter(dataloader)
for step in range(iters_per_epoch):
data = next(data_iter)
im_left_data.data.resize_(data[0].size()).copy_(data[0])
im_right_data.data.resize_(data[1].size()).copy_(data[1])
im_info.data.resize_(data[2].size()).copy_(data[2])
gt_boxes_left.data.resize_(data[3].size()).copy_(data[3])
gt_boxes_right.data.resize_(data[4].size()).copy_(data[4])
gt_boxes_merge.data.resize_(data[5].size()).copy_(data[5])
gt_dim_orien.data.resize_(data[6].size()).copy_(data[6])
gt_kpts.data.resize_(data[7].size()).copy_(data[7])
num_boxes.data.resize_(data[8].size()).copy_(data[8])
start = time.time()
stereoRCNN.zero_grad()
rois_left, rois_right, cls_prob, bbox_pred, dim_orien_pred, kpts_prob, \
left_border_prob, right_border_prob, rpn_loss_cls, rpn_loss_box_left_right,\
RCNN_loss_cls, RCNN_loss_bbox, RCNN_loss_dim_orien, RCNN_loss_kpts, rois_label =\
stereoRCNN(im_left_data, im_right_data, im_info, gt_boxes_left, gt_boxes_right, \
gt_boxes_merge, gt_dim_orien, gt_kpts, num_boxes)
loss = rpn_loss_cls.mean() * torch.exp(-uncert[0]) + uncert[0] +\
rpn_loss_box_left_right.mean() * torch.exp(-uncert[1]) + uncert[1] +\
RCNN_loss_cls.mean() * torch.exp(-uncert[2]) + uncert[2]+\
RCNN_loss_bbox.mean() * torch.exp(-uncert[3]) + uncert[3] +\
RCNN_loss_dim_orien.mean() * torch.exp(-uncert[4]) + uncert[4] +\
RCNN_loss_kpts.mean() * torch.exp(-uncert[5]) + uncert[5]
uncert_data = uncert.data
log_string('uncert: %.4f, %.4f, %.4f, %.4f, %.4f, %.4f' \
%(uncert_data[0], uncert_data[1], uncert_data[2], uncert_data[3], uncert_data[4], uncert_data[5]))
optimizer.zero_grad()
loss.backward()
clip_gradient(stereoRCNN, 10.)
optimizer.step()
end = time.time()
loss_rpn_cls = rpn_loss_cls.data[0]
loss_rpn_box_left_right = rpn_loss_box_left_right.data[0]
loss_rcnn_cls = RCNN_loss_cls.data[0]
loss_rcnn_box = RCNN_loss_bbox.data[0]
loss_rcnn_dim_orien = RCNN_loss_dim_orien.data[0]
loss_rcnn_kpts = RCNN_loss_kpts
fg_cnt = torch.sum(rois_label.data.ne(0))
bg_cnt = rois_label.data.numel() - fg_cnt
log_string('[epoch %2d][iter %4d/%4d] loss: %.4f, lr: %.2e'\
%(epoch, step, iters_per_epoch, loss.data[0], lr))
log_string('\t\t\tfg/bg=(%d/%d), time cost: %f' %(fg_cnt, bg_cnt, end-start))
log_string('\t\t\trpn_cls: %.4f, rpn_box_left_right: %.4f, rcnn_cls: %.4f, rcnn_box_left_right %.4f,dim_orien %.4f, kpts %.4f' \
%(loss_rpn_cls, loss_rpn_box_left_right, loss_rcnn_cls, loss_rcnn_box, loss_rcnn_dim_orien, loss_rcnn_kpts))
del loss, rpn_loss_cls, rpn_loss_box_left_right, RCNN_loss_cls, RCNN_loss_bbox, RCNN_loss_dim_orien, RCNN_loss_kpts
save_name = os.path.join(output_dir, 'stereo_rcnn_{}_{}.pth'.format(epoch, step))
save_checkpoint({
'epoch': epoch + 1,
'model': stereoRCNN.state_dict(),
'optimizer': optimizer.state_dict(),
'uncert':uncert.data,
}, save_name)
log_string('save model: {}'.format(save_name))
end = time.time()
log_string('time %.4f' %(end - start))