Skip to content

idea: Self-Improving Prompt Engineering System with MinionS and LangSmith #83

@sdjc84

Description

@sdjc84

Self-Improving Prompt Engineering System with MinionS and LangSmith

Note: Grok 3 just put a little effort in this, it has not been implemented or tested.

1. Objective

Develop a self-improving system to capture, evaluate, and store prompt engineering refinements for the MinionS protocol using LangSmith, maintaining a prompt_strategies.md file to optimize local (e.g., Ollama with Llama 3.2) and cloud (e.g., GPT-4o) LLM collaboration.

Goals:

  • Log prompts and feedback in LangSmith.
  • Evaluate prompts for accuracy and efficiency.
  • Store high-performing prompts in a .md file.
  • Automate updates to the .md file.
  • Reuse prompts to reduce iteration.
  • Handle edge cases (e.g., missing prompts, API failures).

Success Metrics:

  • 90%+ prompt reuse success rate.
  • Reduce MinionS communication rounds (e.g., 3 to 1).
  • Maintain prompts with >0.9 accuracy/efficiency scores.

2. Tools

  • MinionS Protocol (GitHub):
    • Install: pip install torch transformers streamlit
    • Run demo: streamlit run app.py
    • Config: Local LLM (Ollama, Llama 3. Runt, temperature=0.0), Cloud LLM (OpenAI GPT-4o, API key).
    • Code:
      From minions.clients.ollama import OllamaClient
      From minions.clients.openai import OpenAIClient
      From minions.minions import Minions
      Local_client = OllamaClient(model_name=llama3.2”, temperature=0.0)
      Remote_client = OpenAIClient(model_name=gpt-4o”)
      Minions = Minions(local_client, remote_client)
  • LangSmith (LangSmith):
    • Install: pip install langsmith
    • Config: API key, LANGCHAIN_TRACING_V2=true, LANGCHAIN_PROJECT=MinionS_Prompts
    • Tracing: Wrap OpenAI (wrap_openai), manual logging for Ollama.
  • Other Tools: markdown, re libraries (pip install markdown), cron/GitHub Actions for scheduling.

3. Actionable Implementation Steps

3.1 Capture Refinements
  • Log prompts during task decomposition:
From langsmith import Client
Client = Client()
Def decompose_task(task, context, remote_client):
    Prompt = fDecompose the task: {task} into subtasks.”
    Subtask_prompts = remote_client.chat(prompt)
    For I, p in enumerate(subtask_prompts):
        Client.log_run(inputs={“prompt”: p, “task”: task}, outputs={}, project_name=MinionS_Prompts”, metadata={“subtask_id”: i})
    Return subtask_prompts
  • Log local LLM outputs:
Def execute_subtask(subtask_prompt, local_client):
    Output = local_client.generate(subtask_prompt)
    Client.log_run(inputs={“prompt”: subtask_prompt}, outputs={“response”: output}, project_name=MinionS_Prompts”)
    Return output
  • Edge Case: Fallback prompt if API fails: “Summarize key findings.”
3.2 Evaluate Prompts
  • Use LangSmith’s LLM-as-Judge:
Def evaluate_prompt(run):
    Expected =Expected outputActual = run.outputs.get(“response”, “”)
    Score = 1.0 if expected in actual else 0.5
    Return {“score”: score}
Client.evaluate_runs(project_name=MinionS_Prompts”, evaluator=evaluate_prompt)
  • Query top prompts: runs = client.list_runs(project_name=”MinionS_Prompts”, filters={“score”: {“gte”: 0.9}})
3.3 Store Prompts
  • Update prompt_strategies.md:
From datetime import datetime
Def update_prompt_md(runs, filename=prompt_strategies.md”):
    Content =# Prompt Engineering Strategies\n\n”
    Task_types = {}
    For run in runs:
        Task_type = run.metadata.get(“task_type”, “Unknown”)
        Prompt = run.inputs.get(“prompt”, “”)
        Score = run.scores.get(“score”, 0.0)
        Task_types.setdefault(task_type, []).append((prompt, score))
    For task_type, prompts in task_types.items():
        Content += f## Task Type: {task_type}\n\n### Effective Subtasks\n”
        For I, (prompt, score) in enumerate(prompts, 1):
            Content += f”{i}. \”{prompt}\”\n   - Score: {score:.2f}\n   - Uses: 1\n   - Updated: {datetime.now().strftime(‘%Y-%m-%d’)}\n\nWith open(filename, “w”) as f:
        f.write(content)
  • Example .md:
# Prompt Engineering Strategies
## Task Type: Medical Report Analysis
### Effective Subtasks
1. “Extract blood pressure and classify: normal (<120/80 mmHg), elevated (120-139/80-89 mmHg), high (>140/90 mmHg).”
   - Score: 0.95
   - Uses: 10
   - Updated: 2025-07-03
3.4 Reuse Prompts
  • Parse .md file:
Import re
Def get_prompts_for_task(task_type, filename=prompt_strategies.md”):
    Try:
        With open(filename, “r”) as f:
            Content = f.read()
        Pattern = rf## Task Type: {re.escape(task_type)}\n\n### Effective Subtasks\n(.*?)(?=\n\n## Task Type\Z)”
        Match = re.search(pattern, content, re.DOTALL)
        If match:
            Return re.findall(r”\”(.*?)\””, match.group(1))
        Return []
    Except FileNotFoundError:
        Return []
  • Use in MinionS:
Def run_task(task, context, task_type, minions):
    Prompts = get_prompts_for_task(task_type)
    If prompts:
        Output = minions(task=prompts[0], context=[context], max_rounds=1)
    Else:
        Output = minions(task=task, context=[context], max_rounds=2)
        Client.log_run(inputs={“prompt”: task, “task”: task}, outputs={“response”: output[“final_answer”]}, metadata={“task_type”: task_type})
    Return output
3.5 Automate Updates
  • Schedule daily updates via cron:
0 0 * * * python update_prompts.py
  • Edge Case: Log to temporary JSON if .md write fails:
Import json
Def save_temp_json(runs):
    With open(“temp_prompts.json”, “w”) as f:
        Json.dump([{“prompt”: r.inputs[“prompt”], “score”: r.scores[“score”]} for r in runs], f)

4. Edge Cases and Challenges

  • No Stored Prompts: Generate and log new prompts.
  • API Failures: Retry with exponential backoff or use fallback prompt.
  • Low Scores: Flag runs with scores <0.5 for manual review.
  • Scalability: Use GitHub repository for .md file to handle large teams.

5. Next Steps for Resumption

  • Verify Setup: Ensure MinionS and LangSmith are configured.
  • Test Logging: Run a sample task (e.g., medical report analysis) and verify LangSmith logs.
  • Initialize .md File: Create with initial structure.
  • Schedule Automation: Set up cron job or GitHub Action.
  • Monitor: Check LangSmith dashboard for prompt performance trends.

6. Example Workflow

For a task like “Evaluate cardiovascular risk”:

  1. Check prompt_strategies.md for “Medical Report Analysis” prompts.
  2. If none, decompose task with cloud LLM, log prompts.
  3. Execute subtasks with local LLM, log outputs.
  4. Evaluate with LangSmith, store prompts scoring >0.9.
  5. Update .md file

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions