@@ -58,7 +58,7 @@ Definition fmap11 {A B C : Type} `{IsGraph A, IsGraph B, IsGraph C}
5858 (F : A -> B -> C) `{!Is0Bifunctor F} {a0 a1 : A} (f : a0 $-> a1)
5959 {b0 b1 : B} (g : b0 $-> b1)
6060 : F a0 b0 $-> F a1 b1
61- := fmap (uncurry F) (a := (a0, b0)) (b := (a1, b1)) (f, g) .
61+ := fmap_pair (uncurry F) f g .
6262
6363(** As with [Is0Bifunctor], we store redundant information. In addition, we store the proofs that they are consistent with each other. *)
6464Class Is1Bifunctor {A B C : Type }
@@ -92,13 +92,11 @@ Proof.
9292 - exact (is1functor_functor_uncurried01 (uncurry F)).
9393 - exact (is1functor_functor_uncurried10 (uncurry F)).
9494 - intros a0 a1 f b0 b1 g.
95- refine (fmap2 (uncurry F) _^$ $@ fmap_comp (uncurry F)
96- (a := (a0, b0)) (b := (a1, b0)) (c := (a1, b1)) (f, Id b0) (Id a1, g)).
97- exact (cat_idl _, cat_idr _).
95+ refine (_^$ $@ fmap_pair_comp (uncurry F) f (Id b0) (Id a1) g).
96+ exact (fmap2_pair (uncurry F) (cat_idl _) (cat_idr _)).
9897 - intros a0 a1 f b0 b1 g.
99- refine (fmap2 (uncurry F) _^$ $@ fmap_comp (uncurry F)
100- (a := (a0, b0)) (b := (a0, b1)) (c := (a1, b1)) (Id a0, g) (f, Id b1)).
101- exact (cat_idr _, cat_idl _).
98+ refine (_^$ $@ fmap_pair_comp (uncurry F) (Id a0) g f (Id b1)).
99+ exact (fmap2_pair (uncurry F) (cat_idr _) (cat_idl _)).
102100Defined .
103101
104102Definition Build_Is1Bifunctor'' {A B C : Type }
@@ -149,11 +147,8 @@ Definition fmap02 {A B C : Type} `{Is1Cat A, Is1Cat B, Is1Cat C}
149147Definition fmap12 {A B C : Type} `{Is1Cat A, Is1Cat B, Is1Cat C}
150148 (F : A -> B -> C) `{!Is0Bifunctor F, !Is1Bifunctor F}
151149 {a0 a1 : A} (f : a0 $-> a1) {b0 b1 : B} {g g' : b0 $-> b1} (q : g $== g')
152- : fmap11 F f g $== fmap11 F f g'.
153- Proof .
154- refine (fmap2 (uncurry F) _).
155- exact (Id _, q).
156- Defined .
150+ : fmap11 F f g $== fmap11 F f g'
151+ := fmap2_pair (uncurry F) (Id _) q.
157152
158153Definition fmap20 {A B C : Type} `{Is1Cat A, Is1Cat B, Is1Cat C}
159154 (F : A -> B -> C) `{!Is0Bifunctor F, !Is1Bifunctor F}
@@ -164,21 +159,15 @@ Definition fmap20 {A B C : Type} `{Is1Cat A, Is1Cat B, Is1Cat C}
164159Definition fmap21 {A B C : Type} `{Is1Cat A, Is1Cat B, Is1Cat C}
165160 (F : A -> B -> C) `{!Is0Bifunctor F, !Is1Bifunctor F}
166161 {a0 a1 : A} {f f' : a0 $-> a1} (p : f $== f') {b0 b1 : B} (g : b0 $-> b1)
167- : fmap11 F f g $== fmap11 F f' g.
168- Proof .
169- refine (fmap2 (uncurry F) _).
170- exact (p, Id _).
171- Defined .
162+ : fmap11 F f g $== fmap11 F f' g
163+ := fmap2_pair (uncurry F) p (Id _).
172164
173165Definition fmap22 {A B C : Type} `{Is1Cat A, Is1Cat B, Is1Cat C}
174166 (F : A -> B -> C) `{!Is0Bifunctor F, !Is1Bifunctor F}
175167 {a0 a1 : A} {f f' : a0 $-> a1} (p : f $== f')
176168 {b0 b1 : B} {g g' : b0 $-> b1} (q : g $== g')
177- : fmap11 F f g $== fmap11 F f' g'.
178- Proof .
179- refine (fmap2 (uncurry F) _).
180- exact (p, q).
181- Defined .
169+ : fmap11 F f g $== fmap11 F f' g'
170+ := fmap2_pair (uncurry F) p q.
182171
183172(** *** Identity preservation *)
184173
@@ -230,8 +219,7 @@ Definition fmap11_comp {A B C : Type} `{Is1Cat A, Is1Cat B, Is1Cat C}
230219 {a0 a1 a2 : A} (g : a1 $-> a2) (f : a0 $-> a1)
231220 {b0 b1 b2 : B} (k : b1 $-> b2) (h : b0 $-> b1)
232221 : fmap11 F (g $o f) (k $o h) $== fmap11 F g k $o fmap11 F f h
233- := fmap_comp (uncurry F)
234- (a := (a0, b0)) (b := (a1, b1)) (c := (a2, b2)) (_, _) (_, _).
222+ := fmap_pair_comp (uncurry F) _ _ _ _.
235223
236224(** *** Equivalence preservation *)
237225
0 commit comments