@@ -401,9 +401,9 @@ Defined.
401401Definition nattrans_flip {A B C : Type }
402402 `{Is1Cat A, Is1Cat B, Is1Cat C}
403403 {F : A -> B -> C} `{!Is0Bifunctor F, !Is1Bifunctor F}
404- {G : B -> A -> C} `{!Is0Bifunctor G, !Is1Bifunctor G}
405- : NatTrans (uncurry F) (uncurry (flip G) )
406- -> NatTrans (uncurry (flip F)) (uncurry G ).
404+ {G : A -> B -> C} `{!Is0Bifunctor G, !Is1Bifunctor G}
405+ : NatTrans (uncurry F) (uncurry G )
406+ -> NatTrans (uncurry (flip F)) (uncurry (flip G) ).
407407Proof .
408408 intros [alpha nat].
409409 snrapply Build_NatTrans.
@@ -412,14 +412,6 @@ Proof.
412412 exact (nat (a, b) (a', b') (f, g)).
413413Defined .
414414
415- Definition nattrans_flip' {A B C : Type }
416- `{Is1Cat A, Is1Cat B, Is1Cat C}
417- {F : A -> B -> C} `{!Is0Bifunctor F, !Is1Bifunctor F}
418- {G : B -> A -> C} `{!Is0Bifunctor G, !Is1Bifunctor G}
419- : NatTrans (uncurry (flip F)) (uncurry G)
420- -> NatTrans (uncurry F) (uncurry (flip G))
421- := nattrans_flip (F:=flip F) (G:=flip G).
422-
423415(** ** Opposite Bifunctors *)
424416
425417(** There are a few more combinations we can do for this, such as profunctors, but we will leave those for later. *)
0 commit comments