@@ -32,13 +32,13 @@ Record Adjunction {C D : Type} (F : C -> D) (G : D -> C)
3232 `{Is1Cat C, Is1Cat D, !Is0Functor F, !Is0Functor G} :=
3333{
3434 equiv_adjunction (x : C) (y : D) : (F x $-> y) <~> (x $-> G y) ;
35- (** Naturality condition in both variable separately *)
35+ (** Naturality condition in both variables separately. *)
3636 (** The left variable is a bit trickier to state since we have opposite categories involved. *)
3737 is1natural_equiv_adjunction_l (y : D)
3838 :: Is1Natural (A := C^op) (yon y o F)
3939 (** We have to explicitly give a witness to the functoriality of [yon y o F]. *)
4040 (is0functor_F := is0functor_compose (A:=C^op) (B:=D^op) (C:=Type ) _ _)
41- (yon (G y)) (fun x => equiv_adjunction _ y) ;
41+ (yon (G y)) (fun x => equiv_adjunction x y) ;
4242 (** Naturality in the right variable *)
4343 is1natural_equiv_adjunction_r (x : C)
4444 :: Is1Natural (opyon (F x)) (opyon x o G) (equiv_adjunction x) ;
@@ -66,14 +66,10 @@ Lemma fun01_profunctor {A B C D : Type} (F : A -> B) (G : C -> D)
6666 : Fun01 (A^op * C) (B^op * D).
6767Proof .
6868 snapply Build_Fun01.
69- 1: exact (functor_prod F G).
70- rapply is0functor_prod_functor.
69+ 1: exact (functor_prod (F : A^op -> B^op) G).
70+ rapply is0functor_prod_functor. (* Typeclass search gets confused by the opposite categories. *)
7171Defined .
7272
73- Definition fun01_hom {C : Type } `{Is01Cat C}
74- : Fun01 (C^op * C) Type
75- := @Build_Fun01 _ _ _ _ _ is0functor_hom.
76-
7773(** ** Natural equivalences coming from adjunctions. *)
7874
7975(** There are various bits of data we would like to extract from adjunctions. *)
0 commit comments