5252intros ? E. rewrite <-E. trivial.
5353Qed .
5454
55- #[export] Instance : IsStrongInjective (-).
55+ #[export] Instance isstronginjective_negation_field : IsStrongInjective (-).
5656Proof .
5757repeat (split; try exact _); intros x y E.
5858- apply (strong_extensionality (+ x + y)).
@@ -67,7 +67,7 @@ repeat (split; try exact _); intros x y E.
6767 apply symmetry;trivial.
6868Qed .
6969
70- #[export] Instance : IsStrongInjective (//).
70+ #[export] Instance isstronginjective_recip_field : IsStrongInjective (//).
7171Proof .
7272repeat (split; try exact _); intros x y E.
7373- apply (strong_extensionality (x.1 *.)).
@@ -82,20 +82,20 @@ repeat (split; try exact _); intros x y E.
8282 rewrite mult_1_l,mult_1_r. apply symmetry;trivial.
8383Qed .
8484
85- #[export] Instance : forall z, StrongLeftCancellation (+) z.
85+ #[export] Instance strongleftcancellation_plus_field : forall z, StrongLeftCancellation (+) z.
8686Proof .
8787intros z x y E. apply (strong_extensionality (+ -z)).
8888do 2 rewrite (commutativity (f:=plus) z _),
8989 <-simple_associativity,right_inverse,plus_0_r.
9090trivial.
9191Qed .
9292
93- #[export] Instance : forall z, StrongRightCancellation (+) z.
93+ #[export] Instance strongrightcancellation_plus_field : forall z, StrongRightCancellation (+) z.
9494Proof .
9595intros. exact (strong_right_cancel_from_left (+)).
9696Qed .
9797
98- #[export] Instance : forall z, PropHolds (z ≶ 0) -> StrongLeftCancellation (.*.) z.
98+ #[export] Instance strongleftcancellation_mult_field : forall z, PropHolds (z ≶ 0) -> StrongLeftCancellation (.*.) z.
9999Proof .
100100intros z Ez x y E. red in Ez.
101101rewrite !(commutativity z).
@@ -104,7 +104,7 @@ rewrite <-!simple_associativity, !reciperse_alt.
104104rewrite !mult_1_r;trivial.
105105Qed .
106106
107- #[export] Instance : forall z, PropHolds (z ≶ 0) -> StrongRightCancellation (.*.) z.
107+ #[export] Instance strongrightcancellation_mult_field : forall z, PropHolds (z ≶ 0) -> StrongRightCancellation (.*.) z.
108108Proof .
109109intros. exact (strong_right_cancel_from_left (.*.)).
110110Qed .
@@ -130,7 +130,7 @@ rewrite <-simple_associativity, reciperse_alt, mult_1_r, mult_0_l.
130130trivial.
131131Qed .
132132
133- Instance : NoZeroDivisors F.
133+ Instance nozerodivisors_field : NoZeroDivisors F.
134134Proof .
135135intros x [x_nonzero [y [y_nonzero E]]].
136136assert (~ ~ apart y 0) as Ey.
@@ -142,9 +142,9 @@ assert (~ ~ apart y 0) as Ey.
142142 apply mult_0_l.
143143Qed .
144144
145- #[export] Instance : IsIntegralDomain F := {}.
145+ #[export] Instance isintegraldomain_field : IsIntegralDomain F := {}.
146146
147- #[export] Instance apart_0_sig_apart_0: forall (x : ApartZero F), PropHolds (x.1 ≶ 0).
147+ #[export] Instance apart_0_sig_apart_0 : forall (x : ApartZero F), PropHolds (x.1 ≶ 0).
148148Proof .
149149intros [??];trivial.
150150Qed .
@@ -296,7 +296,7 @@ Section morphisms.
296296
297297 (* We have the following for morphisms to non-trivial strong rings as well.
298298 However, since we do not have an interface for strong rings, we ignore it. *)
299- #[export] Instance : IsStrongInjective f.
299+ #[export] Instance isstronginjective_field_homomorphism : IsStrongInjective f.
300300 Proof .
301301 apply strong_injective_preserves_0.
302302 intros x Ex.
0 commit comments