Skip to content

Commit 7c5ce31

Browse files
authored
Merge pull request #1952 from Alizter/bifunctor-redefin
redefine Bifunctor
2 parents 72ced09 + f235f53 commit 7c5ce31

File tree

11 files changed

+295
-314
lines changed

11 files changed

+295
-314
lines changed

theories/Algebra/AbGroups/AbHom.v

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -92,13 +92,13 @@ Defined.
9292
Global Instance is0bifunctor_ab_hom `{Funext}
9393
: Is0Bifunctor (ab_hom : Group^op -> AbGroup -> AbGroup).
9494
Proof.
95-
rapply Build_Is0Bifunctor.
95+
rapply Build_Is0Bifunctor''.
9696
Defined.
9797

9898
Global Instance is1bifunctor_ab_hom `{Funext}
9999
: Is1Bifunctor (ab_hom : Group^op -> AbGroup -> AbGroup).
100100
Proof.
101-
nrapply Build_Is1Bifunctor.
101+
nrapply Build_Is1Bifunctor''.
102102
1,2: exact _.
103103
intros A A' f B B' g phi; cbn.
104104
by apply equiv_path_grouphomomorphism.

theories/Algebra/AbSES/BaerSum.v

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -54,13 +54,13 @@ Defined.
5454
Global Instance is0bifunctor_abses' `{Univalence}
5555
: Is0Bifunctor (AbSES' : AbGroup^op -> AbGroup -> Type).
5656
Proof.
57-
rapply Build_Is0Bifunctor.
57+
rapply Build_Is0Bifunctor''.
5858
Defined.
5959

6060
Global Instance is1bifunctor_abses' `{Univalence}
6161
: Is1Bifunctor (AbSES' : AbGroup^op -> AbGroup -> Type).
6262
Proof.
63-
snrapply Build_Is1Bifunctor.
63+
snrapply Build_Is1Bifunctor''.
6464
1,2: exact _.
6565
intros ? ? g ? ? f E; cbn.
6666
exact (abses_pushout_pullback_reorder E f g).
@@ -232,13 +232,13 @@ Defined.
232232
Global Instance is0bifunctor_abses `{Univalence}
233233
: Is0Bifunctor (AbSES : AbGroup^op -> AbGroup -> pType).
234234
Proof.
235-
rapply Build_Is0Bifunctor.
235+
rapply Build_Is0Bifunctor''.
236236
Defined.
237237

238238
Global Instance is1bifunctor_abses `{Univalence}
239239
: Is1Bifunctor (AbSES : AbGroup^op -> AbGroup -> pType).
240240
Proof.
241-
snrapply Build_Is1Bifunctor.
241+
snrapply Build_Is1Bifunctor''.
242242
1,2: exact _.
243243
intros ? ? f ? ? g.
244244
rapply hspace_phomotopy_from_homotopy.

theories/Algebra/AbSES/Ext.v

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -63,9 +63,9 @@ Defined.
6363

6464
(** ** The bifunctor [ab_ext] *)
6565

66-
Definition ab_ext `{Univalence} (B A : AbGroup@{u}) : AbGroup.
66+
Definition ab_ext@{u v|u < v} `{Univalence} (B : AbGroup@{u}^op) (A : AbGroup@{u}) : AbGroup@{v}.
6767
Proof.
68-
snrapply (Build_AbGroup (grp_ext B A)).
68+
snrapply (Build_AbGroup (grp_ext@{u v} B A)).
6969
intros E F.
7070
strip_truncations; cbn.
7171
apply ap.
@@ -121,16 +121,16 @@ Defined.
121121
Global Instance is0bifunctor_abext `{Univalence}
122122
: Is0Bifunctor (A:=AbGroup^op) ab_ext.
123123
Proof.
124-
rapply Build_Is0Bifunctor.
124+
rapply Build_Is0Bifunctor''.
125125
Defined.
126126

127127
Global Instance is1bifunctor_abext `{Univalence}
128128
: Is1Bifunctor (A:=AbGroup^op) ab_ext.
129129
Proof.
130-
snrapply Build_Is1Bifunctor.
130+
snrapply Build_Is1Bifunctor''.
131131
1,2: exact _.
132132
intros A B.
133-
exact (bifunctor_isbifunctor (Ext : AbGroup^op -> AbGroup -> pType)).
133+
exact (bifunctor_coh (Ext : AbGroup^op -> AbGroup -> pType)).
134134
Defined.
135135

136136
(** We can push out a fixed extension while letting the map vary, and this defines a group homomorphism. *)

theories/Homotopy/Join/Core.v

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -562,7 +562,8 @@ Section FunctorJoin.
562562

563563
Global Instance is0bifunctor_join : Is0Bifunctor Join.
564564
Proof.
565-
rapply Build_Is0Bifunctor'.
565+
snrapply Build_Is0Bifunctor'.
566+
1,2: exact _.
566567
apply Build_Is0Functor.
567568
intros A B [f g].
568569
exact (functor_join f g).

theories/Homotopy/Join/JoinAssoc.v

Lines changed: 1 addition & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -266,20 +266,7 @@ Proof.
266266
- intros A B C.
267267
apply join_assoc.
268268
- intros [[A B] C] [[A' B'] C'] [[f g] h]; cbn.
269-
(* This is awkward because Monoidal.v works with a tensor that is separately a functor in each variable. *)
270-
intro x.
271-
rhs_V nrapply functor_join_compose.
272-
rhs_V nrapply functor2_join.
273-
2: reflexivity.
274-
2: nrapply functor_join_compose.
275-
cbn.
276-
rhs_V nrapply join_assoc_nat; cbn.
277-
apply ap.
278-
lhs_V nrapply functor_join_compose.
279-
lhs_V nrapply functor_join_compose.
280-
apply functor2_join.
281-
1: reflexivity.
282-
symmetry; nrapply functor_join_compose.
269+
apply join_assoc_nat.
283270
Defined.
284271

285272
(** ** The Triangle Law *)

theories/Homotopy/Smash.v

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -353,7 +353,8 @@ Defined.
353353

354354
Global Instance is0bifunctor_smash : Is0Bifunctor Smash.
355355
Proof.
356-
rapply Build_Is0Bifunctor'.
356+
snrapply Build_Is0Bifunctor'.
357+
1,2: exact _.
357358
nrapply Build_Is0Functor.
358359
intros [X Y] [A B] [f g].
359360
exact (functor_smash f g).

0 commit comments

Comments
 (0)