File tree Expand file tree Collapse file tree 11 files changed +295
-314
lines changed Expand file tree Collapse file tree 11 files changed +295
-314
lines changed Original file line number Diff line number Diff line change @@ -92,13 +92,13 @@ Defined.
9292Global Instance is0bifunctor_ab_hom `{Funext}
9393 : Is0Bifunctor (ab_hom : Group^op -> AbGroup -> AbGroup).
9494Proof .
95- rapply Build_Is0Bifunctor.
95+ rapply Build_Is0Bifunctor'' .
9696Defined .
9797
9898Global Instance is1bifunctor_ab_hom `{Funext}
9999 : Is1Bifunctor (ab_hom : Group^op -> AbGroup -> AbGroup).
100100Proof .
101- nrapply Build_Is1Bifunctor.
101+ nrapply Build_Is1Bifunctor'' .
102102 1,2: exact _.
103103 intros A A' f B B' g phi; cbn.
104104 by apply equiv_path_grouphomomorphism.
Original file line number Diff line number Diff line change @@ -54,13 +54,13 @@ Defined.
5454Global Instance is0bifunctor_abses' `{Univalence}
5555 : Is0Bifunctor (AbSES' : AbGroup^op -> AbGroup -> Type).
5656Proof .
57- rapply Build_Is0Bifunctor.
57+ rapply Build_Is0Bifunctor'' .
5858Defined .
5959
6060Global Instance is1bifunctor_abses' `{Univalence}
6161 : Is1Bifunctor (AbSES' : AbGroup^op -> AbGroup -> Type).
6262Proof .
63- snrapply Build_Is1Bifunctor.
63+ snrapply Build_Is1Bifunctor'' .
6464 1,2: exact _.
6565 intros ? ? g ? ? f E; cbn.
6666 exact (abses_pushout_pullback_reorder E f g).
@@ -232,13 +232,13 @@ Defined.
232232Global Instance is0bifunctor_abses `{Univalence}
233233 : Is0Bifunctor (AbSES : AbGroup^op -> AbGroup -> pType).
234234Proof .
235- rapply Build_Is0Bifunctor.
235+ rapply Build_Is0Bifunctor'' .
236236Defined .
237237
238238Global Instance is1bifunctor_abses `{Univalence}
239239 : Is1Bifunctor (AbSES : AbGroup^op -> AbGroup -> pType).
240240Proof .
241- snrapply Build_Is1Bifunctor.
241+ snrapply Build_Is1Bifunctor'' .
242242 1,2: exact _.
243243 intros ? ? f ? ? g.
244244 rapply hspace_phomotopy_from_homotopy.
Original file line number Diff line number Diff line change @@ -63,9 +63,9 @@ Defined.
6363
6464(** ** The bifunctor [ab_ext] *)
6565
66- Definition ab_ext `{Univalence} (B A : AbGroup@{u}) : AbGroup.
66+ Definition ab_ext@{u v|u < v} `{Univalence} (B : AbGroup@{u}^op) ( A : AbGroup@{u}) : AbGroup@{v} .
6767Proof .
68- snrapply (Build_AbGroup (grp_ext B A)).
68+ snrapply (Build_AbGroup (grp_ext@{u v} B A)).
6969 intros E F.
7070 strip_truncations; cbn.
7171 apply ap.
@@ -121,16 +121,16 @@ Defined.
121121Global Instance is0bifunctor_abext `{Univalence}
122122 : Is0Bifunctor (A:=AbGroup^op) ab_ext.
123123Proof .
124- rapply Build_Is0Bifunctor.
124+ rapply Build_Is0Bifunctor'' .
125125Defined .
126126
127127Global Instance is1bifunctor_abext `{Univalence}
128128 : Is1Bifunctor (A:=AbGroup^op) ab_ext.
129129Proof .
130- snrapply Build_Is1Bifunctor.
130+ snrapply Build_Is1Bifunctor'' .
131131 1,2: exact _.
132132 intros A B.
133- exact (bifunctor_isbifunctor (Ext : AbGroup^op -> AbGroup -> pType)).
133+ exact (bifunctor_coh (Ext : AbGroup^op -> AbGroup -> pType)).
134134Defined .
135135
136136(** We can push out a fixed extension while letting the map vary, and this defines a group homomorphism. *)
Original file line number Diff line number Diff line change @@ -562,7 +562,8 @@ Section FunctorJoin.
562562
563563 Global Instance is0bifunctor_join : Is0Bifunctor Join.
564564 Proof .
565- rapply Build_Is0Bifunctor'.
565+ snrapply Build_Is0Bifunctor'.
566+ 1,2: exact _.
566567 apply Build_Is0Functor.
567568 intros A B [f g].
568569 exact (functor_join f g).
Original file line number Diff line number Diff line change @@ -266,20 +266,7 @@ Proof.
266266 - intros A B C.
267267 apply join_assoc.
268268 - intros [[A B] C] [[A' B'] C'] [[f g] h]; cbn.
269- (* This is awkward because Monoidal.v works with a tensor that is separately a functor in each variable. *)
270- intro x.
271- rhs_V nrapply functor_join_compose.
272- rhs_V nrapply functor2_join.
273- 2: reflexivity.
274- 2: nrapply functor_join_compose.
275- cbn.
276- rhs_V nrapply join_assoc_nat; cbn.
277- apply ap.
278- lhs_V nrapply functor_join_compose.
279- lhs_V nrapply functor_join_compose.
280- apply functor2_join.
281- 1: reflexivity.
282- symmetry; nrapply functor_join_compose.
269+ apply join_assoc_nat.
283270Defined .
284271
285272(** ** The Triangle Law *)
Original file line number Diff line number Diff line change @@ -353,7 +353,8 @@ Defined.
353353
354354Global Instance is0bifunctor_smash : Is0Bifunctor Smash.
355355Proof .
356- rapply Build_Is0Bifunctor'.
356+ snrapply Build_Is0Bifunctor'.
357+ 1,2: exact _.
357358 nrapply Build_Is0Functor.
358359 intros [X Y] [A B] [f g].
359360 exact (functor_smash f g).
You can’t perform that action at this time.
0 commit comments