@@ -433,6 +433,8 @@ Section GroupoidLawsH.
433433
434434 Local Open Scope square_scope.
435435 Notation hr := (sq_refl_h _).
436+ Notation vr := (sq_refl_v _).
437+
436438
437439 Definition sq_concat_h_s1 : sq_concat_h s hr = sq_ccGG (concat_p1 _)^ (concat_p1 _)^ s.
438440 Proof .
@@ -444,6 +446,16 @@ Section GroupoidLawsH.
444446 by destruct s.
445447 Defined .
446448
449+ Definition sq_concat_v_s1 : sq_concat_v s vr = sq_GGcc (concat_p1 _)^ (concat_p1 _)^ s.
450+ Proof .
451+ by destruct s.
452+ Defined .
453+
454+ Definition sq_concat_v_1s : sq_concat_v vr s = sq_GGcc (concat_1p _)^ (concat_1p _)^ s.
455+ Proof .
456+ by destruct s.
457+ Defined .
458+
447459 Context (t : PathSquare px1 px2 p0y p1y) (u : PathSquare px2 px3 p0z p1z).
448460
449461 Definition sq_concat_h_ss_s : sq_concat_h (sq_concat_h s t) u
@@ -666,9 +678,15 @@ Proof.
666678 simpl.
667679 rewrite (sq_concat_h_1s (p0y:=1) (p1y:=1) sq01).
668680 simpl.
669- (* We're missing the analogous [sq_concat_v_1s]. *)
670- remember ((equiv_sq_path^-1 sq01) @ (@concat_p1 A a20 a20 h0j)) as h0j1 eqn: H0j1.
681+ rewrite (sq_concat_v_1s (p0y:=1) (p1y:=1) sq10).
682+ simpl.
683+ (* We're missing the analogous [sq_concat_v_1s]. Done, a .._s1, vr *)
684+ (* remember ((equiv_sq_path^-1 sq01) @ (@concat_p1 A a20 a20 h0j)) as h0j1 eqn: H0j1. *)
671685 destruct ((equiv_sq_path^-1 sq01) @ (@concat_p1 A a20 a20 h0j)). simpl.
686+ destruct ((@concat_p1 A a20 a20 vj0)^ @ (equiv_sq_path^-1 sq10))^. simpl.
687+ simpl in sq10, sq01.
688+ (* This is Eckman-Hilton, but if we remember that h0j, vj0 are 1
689+ by reflexivity, and hence sq01, sq10 are 1-squares, we are done *)
672690Admitted .
673691
674692
0 commit comments