-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
205 lines (179 loc) · 8.36 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import sys
import argparse
import json
import utils
from torch_utils import dataset
from model import ST_MAN
import time, datetime
import numpy as np
datasets = {"PeMS04", "PeMS08", "Loop"}
parser = argparse.ArgumentParser()
parser.add_argument("dataset", type=str, choices=datasets,
default="Loop", help="use a dataset")
# get dataset argument
argv = list(sys.argv)
argv = [i for i in argv if i in datasets]
data_set = parser.parse_args(argv).dataset
config = json.load(open('data/CONFIG(%s).json' % data_set))
parser = argparse.ArgumentParser()
parser.add_argument("dataset", type=str, choices=datasets,
default="Loop", help="use a dataset")
parser.add_argument('--time_slot', type = int, default = config['time_slot'],
help = 'a time step is 5 mins')
parser.add_argument('--P', type = int, default = config['P'],
help = 'history steps')
parser.add_argument('--Q', type = int, default = config['Q'],
help = 'prediction steps')
parser.add_argument('--N', type = int, default = config['N'],
help = 'number of Cross Att Blocks')
parser.add_argument('--L', type = int, default = config['L'],
help = 'number of STAtt Blocks')
parser.add_argument('--K', type = int, default = config['K'],
help = 'number of attention heads')
parser.add_argument('--d', type = int, default = config['d'],
help = 'dims of each head attention outputs')
parser.add_argument('--train_ratio', type = float, default = config['train_ratio'],
help = 'training set [default : 0.7]')
parser.add_argument('--val_ratio', type = float, default = config['val_ratio'],
help = 'validation set [default : 0.1]')
parser.add_argument('--test_ratio', type = float, default = config['test_ratio'],
help = 'testing set [default : 0.2]')
parser.add_argument('--batch_size', type = int, default = config['batch_size'],
help = 'batch size')
parser.add_argument('--max_epoch', type = int, default = config['max_epoch'],
help = 'epoch to run')
parser.add_argument('--patience', type = int, default = config['patience'],
help = 'patience for early stop')
parser.add_argument('--learning_rate', type=float, default = config['learning_rate'],
help='initial learning rate')
parser.add_argument('--decay_rate', type=float, default=config['decay_rate'],
help='decay rate')
parser.add_argument('--traffic_file', default = config['traffic_file'],
help = 'traffic file')
parser.add_argument('--SE_file', default = config['SE_file'],
help = 'spatial emebdding file')
parser.add_argument('--model_file', default = config['model_file'],
help = 'load the model from disk')
parser.add_argument('--log_file', default = config['log_file'] + '.test',
help = 'log file')
parser.add_argument('--gpu_device', default = 'cuda:0',
help = 'test device')
parser.add_argument('--drop_rate', default = config['drop_rate'],
help = 'drop rate')
parser.add_argument('--masked_l1', default = config['masked_l1'], type=bool,
help = 'whether use masked l1 loss')
args = parser.parse_args()
device = torch.device(args.gpu_device if torch.cuda.is_available() else 'cpu')
log = open(args.log_file, 'w')
utils.log_string(log, str(args)[10 : -1])
# load data
utils.log_string(log, 'loading data...')
(trainX, trainTE, trainY, valX, valTE, valY, testX, testTE, testY, SE,
mean, std) = utils.loadData(args)
trainX = torch.FloatTensor(trainX)
valX = torch.FloatTensor(valX)
testX = torch.FloatTensor(testX)
trainY = torch.FloatTensor(trainY)
valY = torch.FloatTensor(valY)
testY = torch.FloatTensor(testY)
SE = torch.FloatTensor(SE).to(device)
trainTE = torch.LongTensor(trainTE)
valTE = torch.LongTensor(valTE)
testTE = torch.LongTensor(testTE)
utils.log_string(log, 'trainX: %s\t\ttrainY: %s' % (trainX.shape, trainY.shape))
utils.log_string(log, 'valX: %s\t\tvalY: %s' % (valX.shape, valY.shape))
utils.log_string(log, 'testX: %s\t\ttestY: %s' % (testX.shape, testY.shape))
utils.log_string(log, 'data loaded!')
utils.log_string(log, 'compiling model...')
T = 24 * 60 // args.time_slot
def test():
train_set = dataset(trainX, trainY, trainTE, SE, device)
train_loader = torch.utils.data.DataLoader(dataset=train_set,
batch_size=args.batch_size,
shuffle=False,
num_workers=0)
val_set = dataset(valX, valY, valTE, SE, device)
val_loader = torch.utils.data.DataLoader(dataset=val_set,
batch_size=args.batch_size,
shuffle=False,
num_workers=0)
test_set = dataset(testX, testY, testTE, SE, device)
test_loader = torch.utils.data.DataLoader(dataset=test_set,
batch_size=args.batch_size,
shuffle=False,
num_workers=0)
utils.log_string(log, '**** testing model ****')
utils.log_string(log, 'loading model from %s' % args.model_file)
model = ST_MAN(1, args.P, args.Q, T, args.N, args.L, args.K, args.d, args.drop_rate, bn=True)
model.load_state_dict(torch.load(args.model_file))
model.to(device)
# display parameters
parameters = 0
for variable in model.parameters():
parameters += np.product([x for x in variable.shape])
utils.log_string(log, 'trainable parameters: {:,}'.format(parameters))
utils.log_string(log, 'model restored!')
utils.log_string(log, 'evaluating...')
model.eval()
# train
trainPred = []
for data in train_loader:
bX, _, bTE = data
p_bY = model(bX, bTE, SE)
p_bY = p_bY * std + mean
trainPred.append(p_bY.cpu().detach().numpy())
trainPred = np.concatenate(trainPred, axis = 0)
# val
valPred = []
for data in val_loader:
bX, _, bTE = data
p_bY = model(bX, bTE, SE)
p_bY = p_bY * std + mean
valPred.append(p_bY.cpu().detach().numpy())
valPred = np.concatenate(valPred, axis = 0)
# test
start_test = time.time()
testPred = []
for data in test_loader:
bX, _, bTE = data
p_bY = model(bX, bTE, SE)
p_bY = p_bY * std + mean
testPred.append(p_bY.cpu().detach().numpy())
end_test = time.time()
testPred = np.concatenate(testPred, axis = 0)
train_mae, train_rmse, train_mape = utils.metric(trainPred, trainY.cpu().numpy(), args.masked_l1)
val_mae, val_rmse, val_mape = utils.metric(valPred, valY.cpu().numpy(), args.masked_l1)
test_mae, test_rmse, test_mape = utils.metric(testPred, testY.cpu().numpy(), args.masked_l1)
utils.log_string(log, 'testing time: %.1fs' % (end_test - start_test))
utils.log_string(log, ' MAE\t\tRMSE\t\tMAPE')
utils.log_string(log, 'train %.2f\t\t%.2f\t\t%.2f%%' %
(train_mae, train_rmse, train_mape * 100))
utils.log_string(log, 'val %.2f\t\t%.2f\t\t%.2f%%' %
(val_mae, val_rmse, val_mape * 100))
utils.log_string(log, 'test %.2f\t\t%.2f\t\t%.2f%%' %
(test_mae, test_rmse, test_mape * 100))
utils.log_string(log, 'performance in each prediction step')
MAE, RMSE, MAPE = [], [], []
for q in range(args.Q):
mae, rmse, mape = utils.metric(testPred[:, q], testY[:, q].cpu().numpy(), args.masked_l1)
MAE.append(mae)
RMSE.append(rmse)
MAPE.append(mape)
utils.log_string(log, 'step: %02d %.2f\t\t%.2f\t\t%.2f%%' %
(q + 1, mae, rmse, mape * 100))
average_mae = np.mean(MAE)
average_rmse = np.mean(RMSE)
average_mape = np.mean(MAPE)
utils.log_string(
log, 'average: %.2f\t\t%.2f\t\t%.2f%%' %
(average_mae, average_rmse, average_mape * 100))
if __name__ == "__main__":
start = time.time()
test()
end = time.time()
utils.log_string(log, 'total time: %.1fmin' % ((end - start) / 60))
log.close()