-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnormal_distribution.cpp
82 lines (70 loc) · 1.81 KB
/
normal_distribution.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
/*
* 产生服从高斯的分布的随机数方法主要有四种:
* 1、中心极限定理法
* 2、Box-Muller算法
* 3、Marsaglia polar算法
* 4、Ziggurat算法
*
* 参考:http://blog.skyoung.org/2013/08/27/generate-random-number/
*/
#include <cstdlib>
#include <cmath>
#include <iostream>
// 中心极限定理法
double random_guassian_central_limit() {
const int N = 20;
double sum = 0;
for( int i = 0; i < N; ++i) {
sum += (double)rand()/RAND_MAX;
}
sum -= N/2.0;
sum /= sqrt(N/12.0);
return sum;
}
// Box-Muller算法
#define PI 3.1415926
double random_guassian_box_muller() {
static double U1, U2;
double Z;
int flag = 0;
if(flag == 0) {
U1 = (double)rand()/RAND_MAX;
U2 = (double)rand()/RAND_MAX;
Z = sqrt(-2*log(U1))*sin(2*PI*U2);
} else {
Z = sqrt(-2*log(U1))*cos(2*PI*U2);
}
flag = 1 - flag;
return Z;
}
/*
* Marsaglia polar算法
* 这样生成的高斯分布随机数序列的期望为0.0,方差为1.0。
* 若指定期望为E,方差为V,则只需增加:X = X * V + E;
*/
double random_guassian_marsaglia_polar() {
static double V1, V2, S;
static int phase = 0;
double X;
double U1, U2;
if ( phase == 0 ) {
do {
U1 = (double)rand() / RAND_MAX;
U2 = (double)rand() / RAND_MAX;
V1 = 2 * U1 - 1;
V2 = 2 * U2 - 1;
S = V1 * V1 + V2 * V2;
} while(S >= 1 || S == 0);
X = V1 * sqrt(-2 * log(S) / S);
} else {
X = V2 * sqrt(-2 * log(S) / S);
}
phase = 1 - phase;
return X;
}
int main(int argc, char * argv[]) {
for (int i = 0; i < 10; ++ i) {
std::cout << random_guassian_central_limit() << "\t" << random_guassian_box_muller() << "\t" << random_guassian_marsaglia_polar() << std::endl;
}
return 0;
}