|
| 1 | +from unitxt import get_logger |
| 2 | +from unitxt.api import create_dataset, evaluate |
| 3 | +from unitxt.task import Task |
| 4 | +from unitxt.templates import JsonOutputTemplate |
| 5 | + |
| 6 | +logger = get_logger() |
| 7 | + |
| 8 | +# |
| 9 | +contexts = [ |
| 10 | + "Austin is the capital of Texas.", |
| 11 | + "Houston is in Texas", |
| 12 | + "Houston is the the largest city in the state but not the capital of it.", |
| 13 | +] |
| 14 | + |
| 15 | +# Set up question answer pairs in a dictionary |
| 16 | +dataset = [ |
| 17 | + { |
| 18 | + "question": "What is the capital of Texas?", |
| 19 | + "conversation_id": 0, |
| 20 | + "turn_id": 0, |
| 21 | + "reference_answers": ["Austin"], |
| 22 | + "reference_contexts": [contexts[0]], |
| 23 | + "reference_context_ids": [0], |
| 24 | + "is_answerable_label": True, |
| 25 | + }, |
| 26 | + { |
| 27 | + "question": "Which is the the largest city in the state?", |
| 28 | + "conversation_id": 0, |
| 29 | + "turn_id": 1, |
| 30 | + "reference_answers": ["Houston"], |
| 31 | + "reference_contexts": [contexts[1], contexts[2]], |
| 32 | + "reference_context_ids": [1, 2], |
| 33 | + "is_answerable_label": True, |
| 34 | + }, |
| 35 | + { |
| 36 | + "question": "How much is 2+2?", |
| 37 | + "conversation_id": 1, |
| 38 | + "turn_id": 0, |
| 39 | + "reference_answers": ["4"], |
| 40 | + "reference_contexts": [""], |
| 41 | + "reference_context_ids": [], |
| 42 | + "is_answerable_label": True, |
| 43 | + }, |
| 44 | + { |
| 45 | + "question": "Multiply the answer by 5", |
| 46 | + "conversation_id": 1, |
| 47 | + "turn_id": 1, |
| 48 | + "reference_answers": ["20"], |
| 49 | + "reference_contexts": [""], |
| 50 | + "reference_context_ids": [], |
| 51 | + "is_answerable_label": True, |
| 52 | + }, |
| 53 | +] |
| 54 | + |
| 55 | +predictions = [ |
| 56 | + { |
| 57 | + "answer": "Houston", |
| 58 | + "contexts": [contexts[2]], |
| 59 | + "context_ids": [2], |
| 60 | + "is_answerable": True, |
| 61 | + }, |
| 62 | + { |
| 63 | + "answer": "Houston", |
| 64 | + "contexts": [contexts[2]], |
| 65 | + "context_ids": [2], |
| 66 | + "is_answerable": True, |
| 67 | + }, |
| 68 | + { |
| 69 | + "answer": "4", |
| 70 | + "contexts": [""], |
| 71 | + "context_ids": [], |
| 72 | + "is_answerable": True, |
| 73 | + }, |
| 74 | + { |
| 75 | + "answer": "25", |
| 76 | + "contexts": [""], |
| 77 | + "context_ids": [], |
| 78 | + "is_answerable": True, |
| 79 | + }, |
| 80 | +] |
| 81 | + |
| 82 | +# select recommended metrics according to your available resources. |
| 83 | +metrics = [ |
| 84 | + "metrics.rag.end_to_end.recommended.cpu_only.all", |
| 85 | + # "metrics.rag.end_to_end.recommended.small_llm.all", |
| 86 | + # "metrics.rag.end_to_end.recommended.llmaj_watsonx.all", |
| 87 | + # "metrics.rag.end_to_end.recommended.llmaj_rits.all" |
| 88 | + # "metrics.rag.end_to_end.recommended.llmaj_azure.all" |
| 89 | +] |
| 90 | + |
| 91 | +multi_turn_rag_task = Task( |
| 92 | + input_fields={ |
| 93 | + "question": "Union[str, Dialog]", |
| 94 | + "conversation_id": "Any", |
| 95 | + "turn_id": "Any", |
| 96 | + "metadata_tags": "Dict[str, str]", |
| 97 | + }, |
| 98 | + reference_fields={ |
| 99 | + "reference_answers": "List[str]", |
| 100 | + "reference_contexts": "List[str]", |
| 101 | + "reference_context_ids": "Union[List[int], List[str]]", |
| 102 | + "is_answerable_label": "bool", |
| 103 | + }, |
| 104 | + metrics=[ |
| 105 | + "metrics.rag.end_to_end.answer_correctness", |
| 106 | + "metrics.rag.end_to_end.answer_faithfulness", |
| 107 | + "metrics.rag.end_to_end.answer_reward", |
| 108 | + "metrics.rag.end_to_end.context_correctness", |
| 109 | + "metrics.rag.end_to_end.context_relevance", |
| 110 | + ], |
| 111 | + prediction_type="RagResponse", |
| 112 | + augmentable_inputs=[ |
| 113 | + "question", |
| 114 | + ], |
| 115 | + defaults={ |
| 116 | + "metadata_tags": {}, |
| 117 | + "reference_answers": [], |
| 118 | + "reference_contexts": [], |
| 119 | + "reference_context_ids": [], |
| 120 | + "is_answerable_label": True, |
| 121 | + }, |
| 122 | +) |
| 123 | + |
| 124 | +template = JsonOutputTemplate( |
| 125 | + input_format="Conversation: {conversation_id} Turn: {turn_id} Question: {question}", |
| 126 | + output_fields={ |
| 127 | + "reference_answers": "answer", |
| 128 | + "reference_contexts": "contexts", |
| 129 | + "reference_context_ids": "context_ids", |
| 130 | + }, |
| 131 | + wrap_with_list_fields=[ |
| 132 | + "reference_contexts", |
| 133 | + "reference_context_ids", |
| 134 | + ], |
| 135 | + postprocessors=[ |
| 136 | + "processors.load_json_predictions", |
| 137 | + ], |
| 138 | +) |
| 139 | + |
| 140 | +dataset = create_dataset( |
| 141 | + task=multi_turn_rag_task, |
| 142 | + test_set=dataset, |
| 143 | + split="test", |
| 144 | + postprocessors=[], |
| 145 | + metrics=metrics, |
| 146 | + template=template, |
| 147 | + group_by=["conversation_id"], |
| 148 | +) |
| 149 | + |
| 150 | +results = evaluate(predictions, dataset) |
| 151 | + |
| 152 | +# Print Results: |
| 153 | + |
| 154 | +print("Global Results:") |
| 155 | +print(results.global_scores.summary) |
| 156 | + |
| 157 | +print("Instance Results:") |
| 158 | +print(results.instance_scores.summary) |
| 159 | + |
| 160 | +print("Group results:") |
| 161 | +print(results.groups_scores.summary) |
0 commit comments