Skip to content

keep getting this error monitor #1

@Asif-Iqbal-Bhatti

Description

@Asif-Iqbal-Bhatti

Hello developers,

I am getting this error

'''
025/11/16 10:50:05 I - New best test loss found (1.09429e-01), checkpointing
2025/11/16 10:50:05 I - Sharding callback duration: 24 microseconds
Traceback (most recent call last):
File "/home/2222/micromamba/envs/grace/bin/gracemaker", line 47, in
main(sys.argv[1:], strategy=strategy, strategy_desc=strategy_desc)
File "/home/2222/micromamba/envs/grace/lib/python3.11/site-packages/tensorpotential/cli/gracemaker.py", line 558, in main
train_adam(
File "/home/2222/micromamba/envs/grace/lib/python3.11/site-packages/tensorpotential/cli/train.py", line 579, in train_adam
callback_list.on_epoch_end(tp.epoch, epoch_end_metrics)
File "/home/2222/micromamba/envs/grace/lib/python3.11/site-packages/keras/src/callbacks/callback_list.py", line 171, in on_epoch_end
callback.on_epoch_end(epoch, logs)
File "/home/2222/micromamba/envs/grace/lib/python3.11/site-packages/tensorpotential/cli/train_callbacks.py", line 136, in on_epoch_end
if self.monitor_op(current, self.best):
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
TypeError: 'NoneType' object is not callable
'''

This is my input yaml file

"""
seed: 1
cutoff: 6.0

data:
filename: train_data.extxyz
test_filename: test_data.extxyz
#reference_energy: {Cl:}

reference_energy: {Al: -1.23, Li: -3.56}

save_dataset: False

stress_units: eV/A3 # eV/A3 (default) or GPa or kbar or -kbar

potential:

If elements not provided - determined automatically from data

preset: GRACE_1LAYER # LINEAR, FS, GRACE_1LAYER, GRACE_2LAYER

For custom model from model.py::custom_model

custom: model.custom_model

keywords-arguments that will be passed to preset or custom function

kwargs: {lmax: 3, n_rad_max: 20, max_order: 3, n_mlp_dens: 10}

#shift: False # True/False
scale: True # False/True or float
fit:
loss: {
energy: { weight: 1, type: huber , delta: 0.01 },
forces: { weight: 100, type: huber , delta: 0.01 },
stress: { weight: 0.1, type: huber , delta: 0.01 },

}

maxiter: 500 # Number of epochs / iterations

optimizer: Adam
opt_params: {
learning_rate: 0.01,
amsgrad: True,
use_ema: True,
ema_momentum: 0.99,
weight_decay: null,
clipvalue: 1.0,
}

for learning-rate reduction

learning_rate_reduction: { patience: 5, factor: 0.98, min: 5.0e-4, stop_at_min: True, resume_lr: True, }

optimizer: L-BFGS-B

opt_params: { "maxcor": 100, "maxls": 20 }

needed for low-energy tier metrics and for "convex_hull"-based distance of energy-based weighting scheme

compute_convex_hull: False
batch_size: 4 # Important hyperparameter for Adam and irrelevant (but must be) for L-BFGS-B
test_batch_size: 16 # test batch size (optional)

jit_compile: True
eval_init_stats: False # to evaluate initial metrics

train_max_n_buckets: 10 # max number of buckets (group of batches of same shape) in train set
test_max_n_buckets: 5 # same for test

checkpoint_freq: 2 # frequency for REGULAR checkpoints.

save_all_regular_checkpoints: True # to store ALL regular checkpoints

progressbar: True # show batch-evaluation progress bar
train_shuffle: True # shuffle train batches on every epoch

"""

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions