-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdata_iter.py
549 lines (432 loc) · 21.3 KB
/
data_iter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
import numpy as np
import utils
class OmniglotExchSeqDataIterator(object):
def __init__(self, seq_len, batch_size, set='train', valid_split=False, rng=None, augment=True, infinite=True):
(x_train, y_train), (x_test, y_test), valid_classes = utils.load_omniglot()
if set == 'train':
self.x = x_train
self.y = y_train
if valid_split:
train_idxs = np.where(np.isin(y_train, valid_classes, invert=True))[0]
self.x = x_train[train_idxs]
self.y = y_train[train_idxs]
elif set == 'test':
self.x = x_test
self.y = y_test
elif set == 'valid':
valid_idxs = np.where(np.isin(y_train, valid_classes))[0]
self.x = x_train[valid_idxs]
self.y = y_train[valid_idxs]
else:
ValueError('which set?')
self.input_dim = self.x.shape[-1]
self.img_shape = (int(np.sqrt(self.input_dim)), int(np.sqrt(self.input_dim)), 1)
self.x = np.reshape(self.x, (self.x.shape[0],) + self.img_shape)
self.x = np.float32(self.x)
self.classes = np.unique(self.y)
self.n_classes = len(self.classes)
self.y2idxs = {}
self.nsamples = 0
for i in list(self.classes):
self.y2idxs[i] = np.where(self.y == i)[0]
self.nsamples += len(self.y2idxs[i])
self.batch_size = batch_size
self.seq_len = seq_len
self.rng = np.random.RandomState(42) if not rng else rng
self.augment = augment
self.infinite = infinite
print(set, 'dataset size:', self.x.shape)
print(set, 'N classes', self.n_classes)
print(set, 'min, max', np.min(self.x), np.max(self.x))
print(set, 'nsamples', self.nsamples)
print('--------------')
def get_observation_size(self):
return (self.seq_len,) + self.img_shape
def generate(self, rng=None, noise_rng=None):
rng = self.rng if rng is None else rng
noise_rng = self.rng if noise_rng is None else noise_rng
while True:
x_batch = np.zeros((self.batch_size,) + self.get_observation_size(), dtype='float32')
for i in range(self.batch_size):
j = rng.choice(self.classes)
idxs = self.y2idxs[j]
rng.shuffle(idxs)
rotation = rng.randint(0, 4)
for k in range(self.seq_len):
x_batch[i, k, :] = self.x[idxs[k], :]
if self.augment:
x_batch[i, k] = np.rot90(x_batch[i, k], k=rotation, axes=(0, 1))
x_batch += noise_rng.uniform(size=x_batch.shape)
yield x_batch
if not self.infinite:
break
def generate_each_digit(self, same_image=False, noise_rng=np.random.RandomState(42), rng=None):
rng = self.rng if rng is None else rng
for i in list(self.classes):
x_batch = np.zeros((1,) + self.get_observation_size(), dtype='float32')
y_batch = np.zeros((1, self.seq_len), dtype='float32')
idxs = self.y2idxs[i].copy()
assert len(idxs) >= self.seq_len
rng.shuffle(idxs)
rotation = rng.randint(0, 4)
for k in range(self.seq_len):
x_batch[0, k, :] = self.x[idxs[0], :] if same_image else self.x[idxs[k], :]
if self.augment:
x_batch[0, k] = np.rot90(x_batch[0, k], k=rotation, axes=(0, 1))
y_batch[0, k] = i
x_batch += noise_rng.uniform(size=x_batch.shape)
yield x_batch, y_batch
def generate_one_digit(self, y_class, same_image=False, noise_rng=np.random.RandomState(42), rng=None):
rng = self.rng if rng is None else rng
idxs = self.y2idxs[y_class]
assert len(idxs) >= self.seq_len
for i in range(len(idxs)):
x_batch = np.zeros((1,) + self.get_observation_size(), dtype='float32')
y_batch = np.zeros((1, self.seq_len), dtype='float32')
random_idxs = idxs.copy()
rng.shuffle(random_idxs)
for k in range(self.seq_len):
x_batch[0, k, :] = self.x[idxs[i], :] if same_image else self.x[random_idxs[k], :]
y_batch[0, k] = y_class
x_batch += noise_rng.uniform(size=x_batch.shape)
yield x_batch, y_batch
def generate_diagonal_roll(self, rng=None, same_class=True, same_image=False, black_image=False, noise_rng=None):
rng = self.rng if rng is None else rng
noise_rng = self.rng if noise_rng is None else noise_rng
batch_size = self.seq_len
while True:
x_batch = np.zeros((batch_size,) + self.get_observation_size(), dtype='float32')
j = rng.choice(self.classes)
idxs = self.y2idxs[j]
assert len(idxs) >= self.seq_len
rng.shuffle(idxs)
sequence = np.zeros((1,) + self.get_observation_size(), dtype='float32')
for k in range(self.seq_len):
if same_image:
sequence[0, k] = self.x[idxs[0]]
else:
sequence[0, k] = self.x[idxs[k]]
if black_image:
sequence[0, 0] *= 0.
if black_image and same_image:
sequence *= 0.
if not same_class:
other_digits = list(self.classes)
other_digits.remove(j)
j2 = rng.choice(other_digits)
idxs = self.y2idxs[j2]
sequence[0, 0] = self.x[rng.choice(idxs)]
sequence += noise_rng.uniform(size=sequence.shape)
for i in range(batch_size):
x_batch[i, :, :] = np.roll(sequence, i, axis=1)
yield x_batch
if not self.infinite:
break
class OmniglotTestBatchSeqDataIterator(object):
def __init__(self, seq_len, batch_size, set='test', rng=None, augment=False):
(x_train, y_train), (x_test, y_test), _ = utils.load_omniglot()
if set == 'train':
self.x = x_train
self.y = y_train
elif set == 'test':
self.x = x_test
self.y = y_test
else:
self.x = np.concatenate((x_train, x_test))
self.y = np.concatenate((y_train, y_test))
self.input_dim = self.x.shape[-1]
self.img_shape = (int(np.sqrt(self.input_dim)), int(np.sqrt(self.input_dim)), 1)
self.x = np.reshape(self.x, (self.x.shape[0],) + self.img_shape)
self.x = np.float32(self.x)
self.classes = list(np.unique(self.y))
self.n_classes = len(self.classes)
self.y2idxs = {}
self.nsamples = 0
for i in self.classes:
self.y2idxs[i] = np.where(self.y == i)[0]
self.nsamples += len(self.y2idxs[i])
self.seq_len = seq_len
self.rng = np.random.RandomState(42) if not rng else rng
self.nsamples = self.x.shape[0]
self.batch_size = batch_size
self.set = set
self.augment = augment
print(set, 'dataset size:', self.x.shape)
print(set, 'N classes', self.n_classes)
print(set, 'min, max', np.min(self.x), np.max(self.x))
print(set, 'nsamples', self.nsamples)
print('--------------')
def get_observation_size(self):
return (self.seq_len,) + self.img_shape
def generate(self, trial=0, **kwargs):
rng = np.random.RandomState(trial)
n_rotations = 4 if self.augment else 0
n_batches = -1
for i in self.classes: # iterate over classes
for rotation in range(n_rotations): # rotate class
x_batch = np.zeros((self.batch_size,) + self.get_observation_size(), dtype='float32')
y_batch = np.zeros((self.batch_size, self.seq_len), dtype='float32')
# choose test/ train images from this class
img_idxs = rng.choice(self.y2idxs[i], size=self.seq_len, replace=False)
for k in range(self.seq_len):
x_batch[0, k] = np.rot90(self.x[img_idxs[k]], k=rotation, axes=(0, 1))
y_batch[0, k] = i
# choose other classes
other_classes = list(self.classes)
other_classes.remove(i)
class_idxs = rng.choice(other_classes, size=self.batch_size - 1, replace=False)
for bi, j in zip(range(1, self.batch_size), class_idxs):
img_idxs = rng.choice(self.y2idxs[j], size=self.seq_len, replace=False)
other_rotation = self.rng.randint(0, 4)
for k in range(self.seq_len):
x_batch[bi, k] = self.x[img_idxs[k]]
y_batch[bi, k] = j
if self.augment:
x_batch[bi, k] = np.rot90(x_batch[bi, k], k=other_rotation, axes=(0, 1))
x_batch[bi, -1] = np.copy(x_batch[0, -1])
y_batch[bi, -1] = np.copy(y_batch[0, -1])
noise_sequence = rng.uniform(size=self.get_observation_size())
for bi in range(x_batch.shape[0]):
x_batch[bi] += noise_sequence
n_batches += 1
yield x_batch, y_batch, n_batches
class OmniglotEpisodesDataIterator(OmniglotTestBatchSeqDataIterator):
def __init__(self, seq_len, batch_size, meta_batch_size, set='train', rng=None, augment=True):
super(OmniglotEpisodesDataIterator, self).__init__(seq_len, batch_size, set, rng, augment)
self.meta_batch_size = meta_batch_size
def generate(self, trial=0, rng=None):
rng = self.rng if rng is None else rng
while True:
x_meta_batch = np.zeros((self.meta_batch_size, self.batch_size,) + self.get_observation_size(),
dtype='float32')
y_meta_batch = np.zeros((self.meta_batch_size, self.batch_size, self.seq_len), dtype='float32')
for m in range(self.meta_batch_size):
i = rng.choice(self.classes)
rotation = self.rng.randint(0, 4)
x_batch = np.zeros((self.batch_size,) + self.get_observation_size(), dtype='float32')
y_batch = np.zeros((self.batch_size, self.seq_len), dtype='float32')
# choose test/ train images from this class
img_idxs = rng.choice(self.y2idxs[i], size=self.seq_len, replace=False)
for k in range(self.seq_len):
x_batch[0, k] = np.rot90(self.x[img_idxs[k]], k=rotation, axes=(0, 1))
y_batch[0, k] = i
# choose other classes
other_classes = list(self.classes)
other_classes.remove(i)
class_idxs = rng.choice(other_classes, size=self.batch_size - 1, replace=False)
for bi, j in zip(range(1, self.batch_size), class_idxs):
img_idxs = rng.choice(self.y2idxs[j], size=self.seq_len, replace=False)
other_rotation = self.rng.randint(0, 4)
for k in range(self.seq_len):
x_batch[bi, k] = self.x[img_idxs[k]]
y_batch[bi, k] = j
if self.augment:
x_batch[bi, k] = np.rot90(x_batch[bi, k], k=other_rotation, axes=(0, 1))
x_batch[bi, -1] = np.copy(x_batch[0, -1])
noise_sequence = rng.uniform(size=self.get_observation_size())
for bi in range(x_batch.shape[0]):
x_batch[bi] += noise_sequence
x_meta_batch[m] = x_batch
y_meta_batch[m] = y_batch
x_meta_batch = np.reshape(x_meta_batch,
(self.meta_batch_size * self.batch_size,) + self.get_observation_size())
y_meta_batch = np.reshape(y_meta_batch, (self.meta_batch_size * self.batch_size, self.seq_len))
yield x_meta_batch, y_meta_batch
class BaseExchSeqDataIterator(object):
def __init__(self, seq_len, batch_size, dataset='mnist', set='train',
rng=None, infinite=True, digits=None):
if dataset == 'fashion_mnist':
(x_train, y_train), (x_test, y_test) = utils.load_fashion_mnist()
if set == 'train':
self.x = x_train
self.y = y_train
else:
self.x = x_test
self.y = y_test
elif dataset == 'mnist':
(x_train, y_train), (x_test, y_test) = utils.load_mnist()
if set == 'train':
self.x = x_train
self.y = y_train
elif set == 'test':
self.x = x_test
self.y = y_test
elif dataset == 'cifar10':
self.x, self.y = utils.load_cifar('data/cifar', subset=set)
self.x = np.transpose(self.x, (0, 2, 3, 1)) # (N,3,32,32) -> (N,32,32,3)
self.x = np.float32(self.x)
self.img_shape = self.x.shape[1:]
self.input_dim = np.prod(self.img_shape)
else:
raise ValueError('wrong dataset name')
if dataset == 'mnist' or dataset == 'fashion_mnist':
self.input_dim = self.x.shape[-1]
self.img_shape = (int(np.sqrt(self.input_dim)), int(np.sqrt(self.input_dim)), 1)
self.x = np.reshape(self.x, (self.x.shape[0],) + self.img_shape)
self.x = np.float32(self.x)
self.classes = np.unique(self.y)
self.n_classes = len(self.classes)
self.y2idxs = {}
self.nsamples = 0
for i in list(self.classes):
self.y2idxs[i] = np.where(self.y == i)[0]
self.nsamples += len(self.y2idxs[i])
self.batch_size = batch_size
self.seq_len = seq_len
self.rng = np.random.RandomState(42) if not rng else rng
self.infinite = infinite
self.digits = digits if digits is not None else np.arange(self.n_classes)
print(set, 'dataset size:', self.x.shape)
print(set, 'N classes', self.n_classes)
print(set, 'min, max', np.min(self.x), np.max(self.x))
print(set, 'nsamples', self.nsamples)
print(set, 'digits', self.digits)
print('--------------')
def get_observation_size(self):
return (self.seq_len,) + self.img_shape
def generate(self, rng=None, noise_rng=None):
rng = self.rng if rng is None else rng
noise_rng = self.rng if noise_rng is None else noise_rng
while True:
x_batch = np.zeros((self.batch_size,) + self.get_observation_size(), dtype='float32')
for i in range(self.batch_size):
j = rng.randint(0, 10) if self.digits is None else rng.choice(self.digits)
idxs = self.y2idxs[j]
assert len(idxs) >= self.seq_len
rng.shuffle(idxs)
for k in range(self.seq_len):
x_batch[i, k, :] = self.x[idxs[k], :]
x_batch += noise_rng.uniform(size=x_batch.shape)
yield x_batch
if not self.infinite:
break
def generate_each_digit(self, same_image=False, noise_rng=np.random.RandomState(42), rng=None):
rng = self.rng if rng is None else rng
for i in range(10):
x_batch = np.zeros((1,) + self.get_observation_size(), dtype='float32')
y_batch = np.zeros((1, self.seq_len), dtype='float32')
idxs = self.y2idxs[i].copy()
assert len(idxs) >= self.seq_len
rng.shuffle(idxs)
for k in range(self.seq_len):
x_batch[0, k, :] = self.x[idxs[0], :] if same_image else self.x[idxs[k], :]
y_batch[0, k] = i
x_batch += noise_rng.uniform(size=x_batch.shape)
yield x_batch, y_batch
def generate_anomaly(self, noise_rng=np.random.RandomState(42)):
while True:
x_batch = np.zeros((1,) + self.get_observation_size(), dtype='float32')
y_batch = np.zeros((1, self.seq_len), dtype='float32')
j = self.rng.randint(0, 10) if self.digits is None else self.rng.choice(self.digits)
idxs = self.y2idxs[j]
assert len(idxs) >= self.seq_len
self.rng.shuffle(idxs)
for k in range(self.seq_len):
x_batch[0, k, :] = self.x[idxs[k], :]
y_batch[0, k] = j
# true anomaly
j = self.rng.randint(0, 10) if self.digits is None else self.rng.choice(self.digits)
idx = self.rng.choice(self.y2idxs[j])
x_batch[0, self.seq_len - 5, :] = self.x[idx, :]
y_batch[0, self.seq_len - 5] = j
x_batch += noise_rng.uniform(size=x_batch.shape)
yield x_batch, y_batch
if not self.infinite:
break
def generate_diagonal_roll(self, same_class=True, same_image=False, black_image=False, rng=None, noise_rng=None):
rng = self.rng if rng is None else rng
noise_rng = self.rng if noise_rng is None else noise_rng
batch_size = self.seq_len
while True:
x_batch = np.zeros((batch_size,) + self.get_observation_size(), dtype='float32')
j = rng.randint(0, 10) if self.digits is None else rng.choice(self.digits)
idxs = self.y2idxs[j]
assert len(idxs) >= self.seq_len
rng.shuffle(idxs)
sequence = np.zeros((1,) + self.get_observation_size(), dtype='float32')
for k in range(self.seq_len):
if same_image:
sequence[0, k] = self.x[idxs[0]]
else:
sequence[0, k] = self.x[idxs[k]]
if black_image:
sequence[0, 0] *= 0.
if black_image and same_image:
sequence *= 0.
if not same_class:
other_digits = list(self.digits)
other_digits.remove(j)
j2 = rng.choice(other_digits)
idxs = self.y2idxs[j2]
sequence[0, 0] = self.x[rng.choice(idxs)]
sequence += noise_rng.uniform(size=sequence.shape)
for i in range(batch_size):
x_batch[i] = np.roll(sequence, i, axis=1)
yield x_batch
if not self.infinite:
break
class BaseTestBatchSeqDataIterator(object):
def __init__(self, seq_len, set='train', dataset='mnist', rng=None, infinite=True, digits=None):
if dataset == 'fashion_mnist':
(x_train, y_train), (x_test, y_test) = utils.load_fashion_mnist()
elif dataset == 'mnist':
(x_train, y_train), (x_test, y_test) = utils.load_mnist()
else:
raise ValueError('wrong dataset name')
self.x_train = x_train
self.y_train = y_train
self.y_train2idxs = {}
for i in range(10):
self.y_train2idxs[i] = np.where(self.y_train == i)[0]
if set == 'train':
self.x = x_train
self.y = y_train
else:
self.x = x_test
self.y = y_test
self.input_dim = self.x.shape[-1]
self.img_shape = (int(np.sqrt(self.input_dim)), int(np.sqrt(self.input_dim)), 1)
self.x = np.reshape(self.x, (self.x.shape[0],) + self.img_shape)
self.x = np.float32(self.x)
self.x_train = np.reshape(self.x_train, (self.x_train.shape[0],) + self.img_shape)
self.x_train = np.float32(self.x_train)
self.y2idxs = {}
for i in range(10):
self.y2idxs[i] = np.where(self.y == i)[0]
self.seq_len = seq_len
self.rng = np.random.RandomState(42) if not rng else rng
self.nsamples = self.x.shape[0]
self.infinite = infinite
self.digits = digits if digits is not None else range(10)
self.n_classes = len(self.digits)
self.batch_size = self.n_classes
self.set = set
print(set, 'dataset size:', self.x.shape)
print(set, 'N classes', self.n_classes)
print(set, 'min, max', np.min(self.x), np.max(self.x))
print(set, 'nsamples', self.nsamples)
print('--------------')
def get_observation_size(self):
return (self.seq_len,) + self.img_shape
def generate(self, trial=0, n_random_samples=1, condition_on_train=False):
rng = np.random.RandomState(trial)
x_batch = np.zeros((self.batch_size,) + self.get_observation_size(), dtype='float32')
y_batch = np.zeros((self.batch_size, self.seq_len), dtype='float32')
idxs_used = []
for i in range(self.batch_size):
idxs = self.y_train2idxs[self.digits[i]] if condition_on_train else self.y2idxs[self.digits[i]]
idxs_cond = idxs[trial * self.seq_len: (trial + 1) * self.seq_len]
x_batch[i, :, :] = self.x_train[idxs_cond] if condition_on_train else self.x[idxs_cond]
idxs_used.extend(idxs_cond[:-1])
y_batch[i, :] = self.digits[i]
idxs_used = [] if condition_on_train else idxs_used
noise_sequence = rng.uniform(size=self.get_observation_size())
x_batch += noise_sequence[None, :, :]
for i in range(self.nsamples):
if i not in idxs_used and self.y[i] in self.digits:
for _ in range(n_random_samples):
test_noise = rng.uniform(size=self.img_shape)
for k in range(self.batch_size):
x_batch[k, -1, :] = self.x[i] + test_noise
y_batch[k, -1] = self.y[i]
yield x_batch, y_batch, i