-
Notifications
You must be signed in to change notification settings - Fork 290
/
demo_phate_documents.py
39 lines (35 loc) · 1.76 KB
/
demo_phate_documents.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# Run $ pip install --user phate
import pandas as pd
from sklearn.feature_extraction.text import TfidfTransformer
import phate
import scattertext as st
from scipy.sparse.linalg import svds
convention_df = st.SampleCorpora.ConventionData2012.get_data()
convention_df['parse'] = convention_df['text'].apply(st.whitespace_nlp_with_sentences)
corpus = (st.CorpusFromParsedDocuments(convention_df,
category_col='party',
parsed_col='parse')
.build()
.get_stoplisted_unigram_corpus())
corpus = corpus.add_doc_names_as_metadata(corpus.get_df()['speaker'])
embeddings = TfidfTransformer().fit_transform(corpus.get_term_doc_mat())
projection_raw = phate.PHATE().fit_transform(embeddings).T
projection = pd.DataFrame({'term': corpus.get_metadata(),
'x': projection_raw[0],
'y': projection_raw[1]}).set_index('term')
category = 'democrat'
scores = (corpus.get_category_ids() == corpus.get_categories().index(category)).astype(int)
html = st.produce_pca_explorer(corpus,
category=category,
category_name='Democratic',
not_category_name='Republican',
metadata=convention_df['speaker'],
width_in_pixels=1000,
use_non_text_features=True,
use_full_doc=True,
projection=projection,
scores=scores,
show_top_terms=False)
file_name = 'demo_phate_documents.html'
open(file_name, 'wb').write(html.encode('utf-8'))
print('Open ./%s in Chrome.' % (file_name))