-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsummarize.py
73 lines (62 loc) · 2.46 KB
/
summarize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
from nltk.corpus import stopwords
from nltk.cluster.util import cosine_distance
import numpy as np
import networkx as nx
def read_file(file_name='transcribe.txt'):
f = open(file_name)
data = f.readlines()
f.close()
sentences = []
for line in data:
line = line.strip().split(':')[1].strip()
sentences+=line.split('. ')
return sentences
def build_similarity_matrix(sentences, stop_words):
# Create an empty similarity matrix
similarity_matrix = np.zeros((len(sentences), len(sentences)))
for idx1 in range(len(sentences)):
for idx2 in range(len(sentences)):
if idx1 == idx2: #ignore if both are same sentences
continue
similarity_matrix[idx1][idx2] = sentence_similarity(sentences[idx1], sentences[idx2], stop_words)
return similarity_matrix
def sentence_similarity(sent1, sent2, stopwords=None):
if stopwords is None:
stopwords = []
sent1 = [w.lower() for w in sent1]
sent2 = [w.lower() for w in sent2]
all_words = list(set(sent1 + sent2))
vector1 = [0] * len(all_words)
vector2 = [0] * len(all_words)
# build the vector for the first sentence
for w in sent1:
if w in stopwords:
continue
vector1[all_words.index(w)] += 1
# build the vector for the second sentence
for w in sent2:
if w in stopwords:
continue
vector2[all_words.index(w)] += 1
return 1 - cosine_distance(vector1, vector2)
def generate_summary(file_name, top_n=5, out_file='summerized.txt'):
stop_words = stopwords.words('english')
summarize_text = []
# Step 1 - Read text and tokenize
sentences = read_file(file_name)
print(sentences)
# Step 2 - Generate Similary Martix across sentences
sentence_similarity_martix = build_similarity_matrix(sentences, stop_words)
# Step 3 - Rank sentences in similarity martix
sentence_similarity_graph = nx.from_numpy_array(sentence_similarity_martix)
scores = nx.pagerank(sentence_similarity_graph)
# Step 4 - Sort the rank and pick top sentences
ranked_sentence = sorted(((scores[i],s) for i,s in enumerate(sentences)), reverse=True)
print("Indexes of top ranked_sentence order are ", ranked_sentence)
for i in range(top_n):
summarize_text.append("".join(ranked_sentence[i][1]))
# Step 5 - Offcourse, output the summarize texr
Text = " ".join(summarize_text)
f = open(out_file,'w')
f.write(Text)
f.close()