-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdsc80_utils.py
168 lines (140 loc) · 4.82 KB
/
dsc80_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
"""
Imports and helpful functions that we use in DSC 80 lectures. Use `make
setup-lec` to copy this (and custom-rise-styles.css) to the lecture folders.
Usage:
from dsc80_utils import *
"""
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from matplotlib_inline.backend_inline import set_matplotlib_formats
from IPython.display import display, IFrame, HTML
import plotly
import plotly.figure_factory as ff
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
import plotly.io as pio
pio.renderers.default = "notebook"
# DSC 80 preferred styles
pio.templates["dsc80"] = go.layout.Template(
layout=dict(
margin=dict(l=30, r=30, t=30, b=30),
autosize=True,
width=600,
height=400,
xaxis=dict(showgrid=True),
yaxis=dict(showgrid=True),
title=dict(x=0.5, xanchor="center"),
)
)
pio.templates.default = "simple_white+dsc80"
set_matplotlib_formats("svg")
sns.set_context("poster")
sns.set_style("whitegrid")
plt.rcParams["figure.figsize"] = (10, 5)
# display options for numpy and pandas
np.set_printoptions(threshold=20, precision=2, suppress=True)
pd.set_option("display.max_rows", 7)
pd.set_option("display.max_columns", 8)
pd.set_option("display.precision", 2)
# Use plotly as default plotting engine
pd.options.plotting.backend = "plotly"
def display_df(
df, rows=pd.options.display.max_rows, cols=pd.options.display.max_columns
):
"""Displays n rows and cols from df"""
with pd.option_context(
"display.max_rows", rows, "display.max_columns", cols
):
display(df)
def dfs_side_by_side(*dfs):
"""
Displays two or more dataframes side by side.
"""
display(
HTML(
f"""
<div style="display: flex; gap: 1rem;">
{''.join(df.to_html() for df in dfs)}
</div>
"""
)
)
from pathlib import Path
# The stuff below is for Lecture 7/8.
def create_kde_plotly(df, group_col, group1, group2, vals_col, title=''):
fig = ff.create_distplot(
hist_data=[df.loc[df[group_col] == group1, vals_col], df.loc[df[group_col] == group2, vals_col]],
group_labels=[group1, group2],
show_rug=False, show_hist=False
)
return fig.update_layout(title=title)
def multiple_hists(df_map, histnorm="probability", title=""):
values = [df_map[df_name]["child"].dropna() for df_name in df_map]
all_sets = pd.concat(values, keys=list(df_map.keys()))
all_sets = all_sets.reset_index()[["level_0", "child"]].rename(
columns={"level_0": "dataset"}
)
fig = px.histogram(
all_sets,
color="dataset",
x="child",
barmode="overlay",
histnorm=histnorm,
)
fig.update_layout(title=title)
return fig
def multiple_kdes(df_map, title=""):
values = [df_map[key]["child"].dropna() for key in df_map]
labels = list(df_map.keys())
fig = ff.create_distplot(
hist_data=values,
group_labels=labels,
show_rug=False,
show_hist=False,
colors=px.colors.qualitative.Dark2[: len(df_map)],
)
return fig.update_layout(title=title).update_xaxes(title="child")
def multiple_describe(df_map):
out = pd.DataFrame(
columns=["Dataset", "Mean", "Standard Deviation"]
).set_index("Dataset")
for key in df_map:
out.loc[key] = df_map[key]["child"].apply(["mean", "std"]).to_numpy()
return out
def make_mcar(data, col, pct=0.5):
"""Create MCAR from complete data"""
missing = data.copy()
idx = data.sample(frac=pct, replace=False).index
missing.loc[idx, col] = np.NaN
return missing
def make_mar_on_cat(data, col, dep_col, pct=0.5):
"""Create MAR from complete data. The dependency is
created on dep_col, which is assumed to be categorical.
This is only *one* of many ways to create MAR data.
For the lecture examples only."""
missing = data.copy()
# pick one value to blank out a lot
high_val = np.random.choice(missing[dep_col].unique())
weights = missing[dep_col].apply(lambda x: 0.9 if x == high_val else 0.1)
idx = data.sample(frac=pct, replace=False, weights=weights).index
missing.loc[idx, col] = np.NaN
return missing
def make_mar_on_num(data, col, dep_col, pct=0.5):
"""Create MAR from complete data. The dependency is
created on dep_col, which is assumed to be numeric.
This is only *one* of many ways to create MAR data.
For the lecture examples only."""
thresh = np.percentile(data[dep_col], 50)
def blank_above_middle(val):
if val >= thresh:
return 0.75
else:
return 0.25
missing = data.copy()
weights = missing[dep_col].apply(blank_above_middle)
idx = missing.sample(frac=pct, replace=False, weights=weights).index
missing.loc[idx, col] = np.NaN
return missing