-
Notifications
You must be signed in to change notification settings - Fork 1
/
ES_classes.py
442 lines (353 loc) · 16.3 KB
/
ES_classes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
import numpy as np
def compute_ranks(x):
"""
Returns ranks in [0, len(x))
Note: This is different from scipy.stats.rankdata, which returns ranks in [1, len(x)].
(https://github.com/openai/evolution-strategies-starter/blob/master/es_distributed/es.py)
"""
assert x.ndim == 1
ranks = np.empty(len(x), dtype=int)
ranks[x.argsort()] = np.arange(len(x))
return ranks
def compute_centered_ranks(x):
"""
https://github.com/openai/evolution-strategies-starter/blob/master/es_distributed/es.py
"""
y = compute_ranks(x.ravel()).reshape(x.shape).astype(np.float32)
y /= (x.size - 1)
y -= .5
return y
def compute_weight_decay(weight_decay, model_param_list):
model_param_grid = np.array(model_param_list)
return - weight_decay * np.mean(model_param_grid * model_param_grid, axis=1)
# adopted from:
# https://github.com/openai/evolution-strategies-starter/blob/master/es_distributed/optimizers.py
class Optimizer(object):
def __init__(self, pi, epsilon=1e-08):
self.pi = pi
self.dim = pi.num_params
self.epsilon = epsilon
self.t = 0
def update(self, globalg):
self.t += 1
step = self._compute_step(globalg)
theta = self.pi.mu
ratio = np.linalg.norm(step) / (np.linalg.norm(theta) + self.epsilon)
self.pi.mu = theta + step
return ratio
def _compute_step(self, globalg):
raise NotImplementedError
class BasicSGD(Optimizer):
def __init__(self, pi, stepsize):
Optimizer.__init__(self, pi)
self.stepsize = stepsize
def _compute_step(self, globalg):
step = -self.stepsize * globalg
return step
class SGD(Optimizer):
def __init__(self, pi, stepsize, momentum=0.9):
Optimizer.__init__(self, pi)
self.v = np.zeros(self.dim, dtype=np.float32)
self.stepsize, self.momentum = stepsize, momentum
def _compute_step(self, globalg):
self.v = self.momentum * self.v + (1. - self.momentum) * globalg
step = -self.stepsize * self.v
return step
class Adam(Optimizer):
def __init__(self, pi, stepsize, beta1=0.99, beta2=0.999):
Optimizer.__init__(self, pi)
self.stepsize = stepsize
self.beta1 = beta1
self.beta2 = beta2
self.m = np.zeros(self.dim, dtype=np.float32)
self.v = np.zeros(self.dim, dtype=np.float32)
def _compute_step(self, globalg):
a = self.stepsize * np.sqrt(1 - self.beta2 ** self.t) / (1 - self.beta1 ** self.t)
self.m = self.beta1 * self.m + (1 - self.beta1) * globalg
self.v = self.beta2 * self.v + (1 - self.beta2) * (globalg * globalg)
step = -a * self.m / (np.sqrt(self.v) + self.epsilon)
return step
class CMAES:
'''CMA-ES wrapper.'''
def __init__(self, coeffs, # number of model parameters
sigma_init=0.10, # initial standard deviation
popsize=255, # population size
weight_decay=0.0): # weight decay coefficient
self.coeffs = coeffs
# self.num_params = num_params
self.sigma_init = sigma_init
self.popsize = popsize
self.weight_decay = weight_decay
self.solutions = None
import cma
self.es = cma.CMAEvolutionStrategy(self.coeffs,
self.sigma_init,
{'popsize': self.popsize,
})
def rms_stdev(self):
sigma = self.es.result[6]
return np.mean(np.sqrt(sigma * sigma))
def ask(self):
'''returns a list of parameters'''
self.solutions = np.array(self.es.ask())
return self.solutions
def tell(self, reward_table_result):
reward_table = -np.array(reward_table_result)
if self.weight_decay > 0:
l2_decay = compute_weight_decay(self.weight_decay, self.solutions)
reward_table += l2_decay
self.es.tell(self.solutions, (reward_table).tolist()) # convert minimizer to maximizer.
def current_param(self):
return self.es.result[5] # mean solution, presumably better with noise
def set_mu(self, mu):
pass
def best_param(self):
return self.es.result[0] # best evaluated solution
def result(self): # return best params so far, along with historically best reward, curr reward, sigma
r = self.es.result
return (r[0], -r[1], -r[1], r[6])
class OpenES:
''' Basic Version of OpenAI Evolution Strategies.'''
def __init__(self, num_params, # number of model parameters
sigma_init=0.1, # initial standard deviation
sigma_decay=0.999, # anneal standard deviation
sigma_limit=0.01, # stop annealing if less than this
learning_rate=0.01, # learning rate for standard deviation
learning_rate_decay=0.9999, # annealing the learning rate
learning_rate_limit=0.001, # stop annealing learning rate
popsize=256, # population size
antithetic=True, # whether to use antithetic sampling
weight_decay=0.00, # weight decay coefficient
rank_fitness=True, # use rank rather than fitness numbers
forget_best=True): # forget historical best
self.num_params = num_params
self.sigma_decay = sigma_decay
self.sigma = sigma_init
self.sigma_init = sigma_init
self.sigma_limit = sigma_limit
self.learning_rate = learning_rate
self.learning_rate_decay = learning_rate_decay
self.learning_rate_limit = learning_rate_limit
self.popsize = popsize
self.antithetic = antithetic
if self.antithetic:
assert (self.popsize % 2 == 0), "Population size must be even"
self.half_popsize = int(self.popsize / 2)
self.reward = np.zeros(self.popsize)
self.mu = np.zeros(self.num_params)
self.best_mu = np.zeros(self.num_params)
self.best_reward = 0
self.first_interation = True
self.forget_best = forget_best
self.weight_decay = weight_decay
self.rank_fitness = rank_fitness
if self.rank_fitness:
self.forget_best = True # always forget the best one if we rank
# choose optimizer
self.optimizer = Adam(self, learning_rate)
def rms_stdev(self):
sigma = self.sigma
return np.mean(np.sqrt(sigma * sigma))
def ask(self):
'''returns a list of parameters'''
# antithetic sampling
if self.antithetic:
self.epsilon_half = np.random.randn(self.half_popsize, self.num_params)
self.epsilon = np.concatenate([self.epsilon_half, - self.epsilon_half])
else:
self.epsilon = np.random.randn(self.popsize, self.num_params)
self.solutions = self.mu.reshape(1, self.num_params) + self.epsilon * self.sigma
return self.solutions
def tell(self, reward_table_result):
# input must be a numpy float array
assert (len(reward_table_result) == self.popsize), "Inconsistent reward_table size reported."
self.reward = np.array(reward_table_result)
reward = np.array(reward_table_result)
if self.rank_fitness:
reward = compute_centered_ranks(reward)
if self.weight_decay > 0:
l2_decay = compute_weight_decay(self.weight_decay, self.solutions)
reward += l2_decay
idx = np.argsort(reward)[::-1]
best_reward = self.reward[idx[0]]
best_mu = self.solutions[idx[0]]
self.curr_best_reward = best_reward
self.curr_best_mu = best_mu
if self.first_interation:
self.first_interation = False
self.best_reward = self.curr_best_reward
self.best_mu = best_mu
else:
if self.forget_best or (self.curr_best_reward > self.best_reward):
self.best_mu = best_mu
self.best_reward = self.curr_best_reward
# main bit:
# standardize the rewards to have a gaussian distribution
std = np.std(reward)
normalized_reward = (reward - np.mean(reward)) / std # np.std(reward)
change_mu = 1. / (self.popsize * self.sigma) * np.dot(self.epsilon.T, normalized_reward)
# self.mu += self.learning_rate * change_mu
self.optimizer.stepsize = self.learning_rate
update_ratio = self.optimizer.update(-change_mu)
# adjust sigma according to the adaptive sigma calculation
if (self.sigma > self.sigma_limit):
self.sigma *= self.sigma_decay
if (self.learning_rate > self.learning_rate_limit):
self.learning_rate *= self.learning_rate_decay
def current_param(self):
return self.curr_best_mu
def set_mu(self, mu):
self.mu = np.array(mu)
def best_param(self):
return self.best_mu
def result(self): # return best params so far, along with historically best reward, curr reward, sigma
return (self.best_mu, self.best_reward, self.curr_best_reward, self.sigma)
class PEPG:
'''Extension of PEPG with bells and whistles.'''
def __init__(self, num_params, # number of model parameters
sigma_init=0.10, # initial standard deviation
sigma_alpha=0.20, # learning rate for standard deviation
sigma_decay=0.999, # anneal standard deviation
sigma_limit=0.01, # stop annealing if less than this
sigma_max_change=0.2, # clips adaptive sigma to 20%
learning_rate=0.01, # learning rate for standard deviation
learning_rate_decay=0.9999, # annealing the learning rate
learning_rate_limit=0.01, # stop annealing learning rate
elite_ratio=0, # if > 0, then ignore learning_rate
popsize=256, # population size
average_baseline=True, # set baseline to average of batch
weight_decay=0.01, # weight decay coefficient
rank_fitness=True, # use rank rather than fitness numbers
forget_best=True): # don't keep the historical best solution
self.num_params = num_params
self.sigma_init = sigma_init
self.sigma_alpha = sigma_alpha
self.sigma_decay = sigma_decay
self.sigma_limit = sigma_limit
self.sigma_max_change = sigma_max_change
self.learning_rate = learning_rate
self.learning_rate_decay = learning_rate_decay
self.learning_rate_limit = learning_rate_limit
self.popsize = popsize
self.average_baseline = average_baseline
if self.average_baseline:
assert (self.popsize % 2 == 0), "Population size must be even"
self.batch_size = int(self.popsize / 2)
else:
assert (self.popsize & 1), "Population size must be odd"
self.batch_size = int((self.popsize - 1) / 2)
# option to use greedy es method to select next mu, rather than using drift param
self.elite_ratio = elite_ratio
self.elite_popsize = int(self.popsize * self.elite_ratio)
self.use_elite = False
if self.elite_popsize > 0:
self.use_elite = True
self.forget_best = forget_best
self.batch_reward = np.zeros(self.batch_size * 2)
self.mu = np.zeros(self.num_params)
self.sigma = np.ones(self.num_params) * self.sigma_init
self.curr_best_mu = np.zeros(self.num_params)
self.best_mu = np.zeros(self.num_params)
self.best_reward = 0
self.first_interation = True
self.weight_decay = weight_decay
self.rank_fitness = rank_fitness
if self.rank_fitness:
self.forget_best = True # always forget the best one if we rank
# choose optimizer
self.optimizer = Adam(self, learning_rate)
def rms_stdev(self):
sigma = self.sigma
return np.mean(np.sqrt(sigma * sigma))
def ask(self):
'''returns a list of parameters'''
# antithetic sampling
self.epsilon = np.random.randn(self.batch_size, self.num_params) * self.sigma.reshape(1, self.num_params)
self.epsilon_full = np.concatenate([self.epsilon, - self.epsilon])
if self.average_baseline:
epsilon = self.epsilon_full
else:
# first population is mu, then positive epsilon, then negative epsilon
epsilon = np.concatenate([np.zeros((1, self.num_params)), self.epsilon_full])
solutions = self.mu.reshape(1, self.num_params) + epsilon
self.solutions = solutions
return solutions
def tell(self, reward_table_result):
# input must be a numpy float array
assert (len(reward_table_result) == self.popsize), "Inconsistent reward_table size reported."
reward_table = np.array(reward_table_result)
if self.rank_fitness:
reward_table = compute_centered_ranks(reward_table)
if self.weight_decay > 0:
l2_decay = compute_weight_decay(self.weight_decay, self.solutions)
reward_table += l2_decay
reward_offset = 1
if self.average_baseline:
b = np.mean(reward_table)
reward_offset = 0
else:
b = reward_table[0] # baseline
reward = reward_table[reward_offset:]
if self.use_elite:
idx = np.argsort(reward)[::-1][0:self.elite_popsize]
else:
idx = np.argsort(reward)[::-1]
best_reward = reward[idx[0]]
if (best_reward > b or self.average_baseline):
best_mu = self.mu + self.epsilon_full[idx[0]]
best_reward = reward[idx[0]]
else:
best_mu = self.mu
best_reward = b
self.curr_best_reward = best_reward
self.curr_best_mu = best_mu
if self.first_interation:
self.sigma = np.ones(self.num_params) * self.sigma_init
self.first_interation = False
self.best_reward = self.curr_best_reward
self.best_mu = best_mu
else:
if self.forget_best or (self.curr_best_reward > self.best_reward):
self.best_mu = best_mu
self.best_reward = self.curr_best_reward
# short hand
epsilon = self.epsilon
sigma = self.sigma
# update the mean
# move mean to the average of the best idx means
if self.use_elite:
self.mu += self.epsilon_full[idx].mean(axis=0)
else:
rT = (reward[:self.batch_size] - reward[self.batch_size:])
change_mu = np.dot(rT, epsilon)
self.optimizer.stepsize = self.learning_rate
update_ratio = self.optimizer.update(-change_mu) # adam, rmsprop, momentum, etc.
# self.mu += (change_mu * self.learning_rate) # normal SGD method
# adaptive sigma
# normalization
if (self.sigma_alpha > 0):
stdev_reward = 1.0
if not self.rank_fitness:
stdev_reward = reward.std()
S = ((epsilon * epsilon - (sigma * sigma).reshape(1, self.num_params)) / sigma.reshape(1, self.num_params))
reward_avg = (reward[:self.batch_size] + reward[self.batch_size:]) / 2.0
rS = reward_avg - b
delta_sigma = (np.dot(rS, S)) / (2 * self.batch_size * stdev_reward)
# adjust sigma according to the adaptive sigma calculation
# for stability, don't let sigma move more than 10% of orig value
change_sigma = self.sigma_alpha * delta_sigma
change_sigma = np.minimum(change_sigma, self.sigma_max_change * self.sigma)
change_sigma = np.maximum(change_sigma, - self.sigma_max_change * self.sigma)
self.sigma += change_sigma
if (self.sigma_decay < 1):
self.sigma[self.sigma > self.sigma_limit] *= self.sigma_decay
if (self.learning_rate_decay < 1 and self.learning_rate > self.learning_rate_limit):
self.learning_rate *= self.learning_rate_decay
def current_param(self):
return self.curr_best_mu
def set_mu(self, mu):
self.mu = np.array(mu)
def best_param(self):
return self.best_mu
def result(self): # return best params so far, along with historically best reward, curr reward, sigma
return (self.best_mu, self.best_reward, self.curr_best_reward, self.sigma)