@@ -54,91 +54,76 @@ def parse_dim_args(dim_args, default_dim_args):
5454
5555def dimension_Gamma_2 (wt_range , j ):
5656 r"""
57- <ul>
58- <li>First entry of the respective triple: The full space.</li>
59- <li>Second entry: The codimension of the subspace of cusp forms.</li>
60- <li>Third entry: The subspace of cusp forms.</li>
61- </ul>
62- <p> More precisely, The triple $[a,b,c]$ in
63- <ul>
64- <li>
65- row <span class="emph">All</span>
66- and in the $k$th column shows the dimension of
67- the full space $M_{k,j}(\Gamma(2))$,
68- of the non cusp forms, and of the cusp forms.</li>
69- <li>
70- in row <span class="emph">$p$</span>, where $p$ is a partition of $6$,
71- and in the $k$th column shows the multiplicity of the
72- $\mathrm{Sp}(4,\Z)$-representation
73- associated to $p$ in the full $\mathrm{Sp}(4,\Z)$-module
74- $M_{k,j}(\Gamma(2))$,
75- in the submodule of non cusp forms and of cusp forms.
76- (See below for details.)
77- </li>
78- </ul>
57+ First entry of the respective triple: The full space.
58+ Second entry: The codimension of the subspace of cusp forms.
59+ Third entry: The subspace of cusp forms.
7960
61+ More precisely, The triple $[a,b,c]$ in
62+
63+ row All
64+ and in the $k$th column shows the dimension of
65+ the full space $M_{k,j}(\Gamma(2))$,
66+ of the non cusp forms, and of the cusp forms.
67+
68+ in row $p$, where $p$ is a partition of $6$,
69+ and in the $k$th column shows the multiplicity of the
70+ $\mathrm{Sp}(4,\Z)$-representation
71+ associated to $p$ in the full $\mathrm{Sp}(4,\Z)$-module
72+ $M_{k,j}(\Gamma(2))$,
73+ in the submodule of non cusp forms and of cusp forms.
74+ (See below for details.)
8075 """
8176 return _dimension_Gamma_2 (wt_range , j , group = 'Gamma(2)' )
8277
8378
8479def dimension_Gamma1_2 (wt_range , j ):
8580 r"""
86- <ul>
87- <li>First entry of the respective triple: The full space.</li>
88- <li>Second entry: The codimension of the subspace of cusp forms.</li>
89- <li>Third entry: The subspace of cusp forms.</li>
90- </ul>
91- <p> More precisely, The triple $[a,b,c]$ in
92- <ul>
93- <li>
94- row <span class="emph">All</span>
95- and in the $k$th column shows the dimension of
96- the full space $M_{k,j}(\Gamma(2))$,
97- of the non cusp forms, and of the cusp forms.</li>
98- <li>
99- in row <span class="emph">$p$</span>, where $p$ is a partition of $3$,
100- and in the $k$th column shows the multiplicity of the
101- $\Gamma_1(2)$-representation
102- associated to $p$ in the full $\Gamma_1(2)$-module $M_{k,j}(\Gamma(2))$,
103- in the submodule of non cusp forms and of cusp forms.
104- (See below for details.)
105- </li>
106- </ul>
81+ First entry of the respective triple: The full space.
82+ Second entry: The codimension of the subspace of cusp forms.
83+ Third entry: The subspace of cusp forms.
84+
85+ More precisely, The triple $[a,b,c]$ in
86+
87+ row All
88+ and in the $k$th column shows the dimension of
89+ the full space $M_{k,j}(\Gamma(2))$,
90+ of the non cusp forms, and of the cusp forms.
91+
92+ in row $p$, where $p$ is a partition of $3$,
93+ and in the $k$th column shows the multiplicity of the
94+ $\Gamma_1(2)$-representation
95+ associated to $p$ in the full $\Gamma_1(2)$-module $M_{k,j}(\Gamma(2))$,
96+ in the submodule of non cusp forms and of cusp forms.
97+ (See below for details.)
10798 """
10899 return _dimension_Gamma_2 (wt_range , j , group = 'Gamma1(2)' )
109100
110101
111102def dimension_Gamma0_2 (wt_range , j ):
112103 """
113- <ul>
114- <li><span class="emph">Total</span>: The full space.</li>
115- <li><span class="emph">Non cusp</span>: The codimension of the subspace of cusp forms.</li>
116- <li><span class="emph">Cusp</span>: The subspace of cusp forms.</li>
117- </ul>
104+ <span class="emph">Total</span>: The full space.
105+ <span class="emph">Non cusp</span>: The codimension of the subspace of cusp forms.
106+ <span class="emph">Cusp</span>: The subspace of cusp forms.
118107 """
119108 return _dimension_Gamma_2 (wt_range , j , group = 'Gamma0(2)' )
120109
121110
122111def dimension_Sp4Z (wt_range ):
123112 """
124- <ul>
125- <li><span class="emph">Total</span>: The full space.</li>
126- <li><span class="emph">Eisenstein</span>: The subspace of Siegel Eisenstein series.</li>
127- <li><span class="emph">Klingen</span>: The subspace of Klingen Eisenstein series.</li>
128- <li><span class="emph">Maass</span>: The subspace of Maass liftings.</li>
129- <li><span class="emph">Interesting</span>: The subspace spanned by cuspidal eigenforms that are not Maass liftings.</li>
130- </ul>
113+ <span class="emph">Total</span>: The full space.
114+ <span class="emph">Eisenstein</span>: The subspace of Siegel Eisenstein series.
115+ <span class="emph">Klingen</span>: The subspace of Klingen Eisenstein series.
116+ <span class="emph">Maass</span>: The subspace of Maass liftings.
117+ <span class="emph">Interesting</span>: The subspace spanned by cuspidal eigenforms that are not Maass liftings.
131118 """
132119 return _dimension_Sp4Z (wt_range )
133120
134121
135122def dimension_Sp4Z_2 (wt_range ):
136123 """
137- <ul>
138- <li><span class="emph">Total</span>: The full space.</li>
139- <li><span class="emph">Non cusp</span>: The subspace of non cusp forms.</li>
140- <li><span class="emph">Cusp</span>: The subspace of cusp forms.</li>
141- </ul>
124+ <span class="emph">Total</span>: The full space.
125+ <span class="emph">Non cusp</span>: The subspace of non cusp forms.
126+ <span class="emph">Cusp</span>: The subspace of cusp forms.
142127 """
143128 return _dimension_Gamma_2 (wt_range , 2 , group = 'Sp4(Z)' )
144129
@@ -160,11 +145,9 @@ def dimension_table_Sp4Z_j(wt_range, j_range):
160145
161146def dimension_Sp4Z_j (wt_range , j ):
162147 """
163- <ul>
164- <li><span class="emph">Total</span>: The full space.</li>
165- <li><span class="emph">Non cusp</span>: The subspace of non cusp forms.</li>
166- <li><span class="emph">Cusp</span>: The subspace of cusp forms.</li>
167- </ul>
148+ <span class="emph">Total</span>: The full space.
149+ <span class="emph">Non cusp</span>: The subspace of non cusp forms.
150+ <span class="emph">Cusp</span>: The subspace of cusp forms.
168151 """
169152 return _dimension_Gamma_2 (wt_range , j , group = 'Sp4(Z)' )
170153
@@ -307,12 +290,10 @@ def _dimension_Gamma_2(wt_range, j, group='Gamma(2)'):
307290
308291def dimension_Sp6Z (wt_range ):
309292 """
310- <ul>
311- <li><span class="emph">Total</span>: The full space.</li>
312- <li><span class="emph">Miyawaki lifts I</span>: The subspace of Miyawaki lifts of type I.</li>
313- <li><span class="emph">Miyawaki lifts II</span>: The subspace of (conjectured) Miyawaki lifts of type II.</li>
314- <li><span class="emph">Other</span>: The subspace of cusp forms which are not Miyawaki lifts of type I or II.</li>
315- </ul>
293+ <span class="emph">Total</span>: The full space.
294+ <span class="emph">Miyawaki lifts I</span>: The subspace of Miyawaki lifts of type I.
295+ <span class="emph">Miyawaki lifts II</span>: The subspace of (conjectured) Miyawaki lifts of type II.
296+ <span class="emph">Other</span>: The subspace of cusp forms which are not Miyawaki lifts of type I or II.
316297 """
317298 return _dimension_Sp6Z (wt_range )
318299
@@ -365,12 +346,10 @@ def __dimension_Sp6Z(wt):
365346
366347def dimension_Sp8Z (wt_range ):
367348 """
368- <ul>
369- <li><span class="emph">Total</span>: The subspace of cusp forms.</li>
370- <li><span class="emph">Ikeda lifts</span>: The subspace of Ikeda lifts.</li>
371- <li><span class="emph">Miyawaki lifts</span>: The subspace of Miyawaki lifts.</li>
372- <li><span class="emph">Other</span>: The subspace that are not Ikeda or Miyawaki lifts.</li>
373- </ul>
349+ <span class="emph">Total</span>: The subspace of cusp forms.
350+ <span class="emph">Ikeda lifts</span>: The subspace of Ikeda lifts.
351+ <span class="emph">Miyawaki lifts</span>: The subspace of Miyawaki lifts.
352+ <span class="emph">Other</span>: The subspace that are not Ikeda or Miyawaki lifts.
374353 """
375354 headers = ['Total' , 'Ikeda lifts' , 'Miyawaki lifts' , 'Other' ]
376355 dct = {}
@@ -429,11 +408,9 @@ def _dimension_Sp8Z(wt):
429408
430409def dimension_Gamma0_4_half (wt_range ):
431410 """
432- <ul>
433- <li><span class="emph">Total</span>: The full space.</li>
434- <li><span class="emph">Non cusp</span>: The codimension of the subspace of cusp forms.</li>
435- <li><span class="emph">Cusp</span>: The subspace of cusp forms.</li>
436- </ul>
411+ <span class="emph">Total</span>: The full space.
412+ <span class="emph">Non cusp</span>: The codimension of the subspace of cusp forms.
413+ <span class="emph">Cusp</span>: The subspace of cusp forms.
437414 """
438415 headers = ['Total' , 'Non cusp' , 'Cusp' ]
439416 dct = {}
@@ -449,14 +426,17 @@ def _dimension_Gamma0_4_half(k):
449426 of half integral weight k - 1/2.
450427
451428 INPUT
452- The realweight is k-1/2
429+
430+ The realweight is k-1/2
453431
454432 OUTPUT
455- ('Total', 'Non cusp', 'Cusp')
433+
434+ ('Total', 'Non cusp', 'Cusp')
456435
457436 REMARK
458- Note that formula from Hayashida's and Ibukiyama's paper has formula
459- that coefficient of x^w is for weight (w+1/2). So here w=k-1.
437+
438+ Note that formula from Hayashida's and Ibukiyama's paper has formula
439+ that coefficient of x^w is for weight (w+1/2). So here w=k-1.
460440 """
461441 if k < 1 :
462442 raise ValueError ("$k$ must be a positive integer" )
@@ -475,9 +455,7 @@ def _dimension_Gamma0_4_half(k):
475455
476456def dimension_Gamma0_3_psi_3 (wt_range ):
477457 """
478- <ul>
479- <li><span class="emph">Total</span>: The full space.</li>
480- </ul>
458+ <span class="emph">Total</span>: The full space.
481459 """
482460 headers = ['Total' ]
483461 dct = {}
@@ -493,10 +471,12 @@ def _dimension_Gamma0_3_psi_3(wt):
493471 on $Gamma_0(3)$ with character $\psi_3$.
494472
495473 OUTPUT
496- ("Total")
474+
475+ ("Total")
497476
498477 REMARK
499- Not completely implemented
478+
479+ Not completely implemented
500480 """
501481 R = PowerSeriesRing (ZZ , default_prec = wt + 1 , names = ('x' ,))
502482 (x ,) = R ._first_ngens (1 )
@@ -515,10 +495,9 @@ def _dimension_Gamma0_3_psi_3(wt):
515495
516496def dimension_Gamma0_4_psi_4 (wt_range ):
517497 """
518- <ul>
519- <li><span class="emph">Total</span>: The full space.</li>
520- </ul>
521- <p> Odd weights are not yet implemented.</p>
498+ <span class="emph">Total</span>: The full space.
499+
500+ Odd weights are not yet implemented.
522501 """
523502 headers = ['Total' ]
524503 dct = {}
@@ -537,10 +516,12 @@ def _dimension_Gamma0_4_psi_4(wt):
537516 with character $\psi_4$.
538517
539518 OUTPUT
540- ("Total")
519+
520+ ("Total")
541521
542522 REMARK
543- The formula for odd weights is unknown or not obvious from the paper.
523+
524+ The formula for odd weights is unknown or not obvious from the paper.
544525 """
545526 R = PowerSeriesRing (ZZ , default_prec = wt + 1 , names = ('x' ,))
546527 (x ,) = R ._first_ngens (1 )
@@ -556,9 +537,7 @@ def _dimension_Gamma0_4_psi_4(wt):
556537
557538def dimension_Gamma0_4 (wt_range ):
558539 """
559- <ul>
560- <li><span class="emph">Total</span>: The full space.</li>
561- </ul>
540+ <span class="emph">Total</span>: The full space.
562541 """
563542 headers = ['Total' ]
564543 dct = {}
@@ -573,10 +552,12 @@ def _dimension_Gamma0_4(wt):
573552 Return the dimensions of subspaces of Siegel modular forms on $Gamma0(4)$.
574553
575554 OUTPUT
576- ("Total",)
555+
556+ ("Total",)
577557
578558 REMARK
579- Not completely implemented
559+
560+ Not completely implemented
580561 """
581562 R = PowerSeriesRing (ZZ , 'x' )
582563 x = R .gen ().O (wt + 1 )
@@ -590,9 +571,7 @@ def _dimension_Gamma0_4(wt):
590571
591572def dimension_Gamma0_3 (wt_range ):
592573 """
593- <ul>
594- <li><span class="emph">Total</span>: The full space.</li>
595- </ul>
574+ <span class="emph">Total</span>: The full space.
596575 """
597576 headers = ['Total' ]
598577 dct = {}
@@ -607,10 +586,12 @@ def _dimension_Gamma0_3(wt):
607586 Return the dimensions of subspaces of Siegel modular forms on $Gamma0(3)$.
608587
609588 OUTPUT
610- ("Total")
589+
590+ ("Total")
611591
612592 REMARK
613- Only total dimension implemented.
593+
594+ Only total dimension implemented.
614595 """
615596 R = PowerSeriesRing (ZZ , 'x' )
616597 x = R .gen ().O (wt + 1 )
@@ -624,11 +605,9 @@ def _dimension_Gamma0_3(wt):
624605
625606def dimension_Dummy_0 (wt_range ):
626607 """
627- <ul>
628- <li><span class="emph">Total</span>: The subspace of cusp forms.</li>
629- <li><span class="emph">Yoda lifts</span>: The subspace of Master Yoda lifts.</li>
630- <li><span class="emph">Hinkelstein series</span>: The subspace of Hinkelstein series.</li>
631- </ul>
608+ <span class="emph">Total</span>: The subspace of cusp forms.
609+ <span class="emph">Yoda lifts</span>: The subspace of Master Yoda lifts.
610+ <span class="emph">Hinkelstein series</span>: The subspace of Hinkelstein series.
632611 """
633612 headers = ['Total' , 'Yoda lifts' , 'Hinkelstein series' ]
634613 dct = {}
0 commit comments