-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathDESCRIPTION
37 lines (37 loc) · 1.52 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
Package: kdensity
Type: Package
Title: Kernel Density Estimation with Parametric Starts and Asymmetric Kernels
Version: 1.1.1
Authors@R: c(
person("Jonas", "Moss", , "[email protected]", role = c("aut", "cre"),
comment = c(ORCID = "0000-0002-6876-6964")),
person("Martin", "Tveten", ,"[email protected]", role = c("ctb"))
)
Description: Handles univariate non-parametric density estimation with
parametric starts and asymmetric kernels in a simple and flexible way.
Kernel density estimation with parametric starts involves fitting a
parametric density to the data before making a correction with kernel
density estimation, see Hjort & Glad (1995) <doi:10.1214/aos/1176324627>.
Asymmetric kernels make kernel density estimation more efficient on bounded
intervals such as (0, 1) and the positive half-line. Supported asymmetric
kernels are the gamma kernel of Chen (2000) <doi:10.1023/A:1004165218295>,
the beta kernel of Chen (1999) <doi:10.1016/S0167-9473(99)00010-9>, and the
copula kernel of Jones & Henderson (2007) <doi:10.1093/biomet/asm068>.
User-supplied kernels, parametric starts, and bandwidths are supported.
License: MIT + file LICENSE
URL: https://github.com/JonasMoss/kdensity
BugReports: https://github.com/JonasMoss/kdensity/issues
Encoding: UTF-8
LazyData: true
Suggests: extraDistr,
SkewHyperbolic,
testthat,
covr,
knitr,
rmarkdown
Imports: assertthat,
univariateML,
EQL
RoxygenNote: 7.3.2
VignetteBuilder: knitr
Roxygen: list(markdown = TRUE)