forked from lassefolkersen/highfrontier
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtechnology.py
1268 lines (939 loc) · 55.8 KB
/
technology.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import math
import random
import pygame
from xml.dom import minidom
import os
import global_variables
import primitives
class Tree():
"""
The tree is the class that holds all that exists. It started actually as an igraph object (from the igraph class),
but because none of the igraph related functions were used it was migrated to instead by two variables called
self.vertex_dict and self.edge_dict
The self.vertex_dict is a dictionary of dictionaries, each key being the technology_name variable of the tech. The dictionary
that is its value contains the following:
cartesian_coordinates the coordinates of the tech in cartesian coordinates
polar_coordinates the coordinates of the tech in polar coordinates (these two are calculated at the beginning and should not be changed)
known_by Dictionary of companies (names as keys) that know this tech. Can also be "everybody" in which case everybody, including newly started companies gets to know it.
technology_name The name of the technology. This is also the key by which it is called
neighbours list with links to the connected technologies.
for_sale_by Dictionary of with companies as keys and the price they sell at as values
"""
def __init__(self,coretree,solar_system_object_link):
self.vertex_dict = {}
self.vertex_dict["common knowledge"] = {}
self.vertex_dict["common knowledge"]["input_output_dict"] = {"input":{},"output":{},"timeframe":None,"byproducts":{}}
self.vertex_dict["common knowledge"]["polar_coordinates"] = (0,0)
self.vertex_dict["common knowledge"]["cartesian_coordinates"] = (0,0)
self.vertex_dict["common knowledge"]["known_by"] = "everybody"
self.vertex_dict["common knowledge"]["for_sale_by"] = {}
self.vertex_dict["common knowledge"]["technology_name"] = "common knowledge"
self.vertex_dict["common knowledge"]["neighbours"] = []
self.solar_system_object_link = solar_system_object_link
self.tendency_to_choose_forward_parents = 0.5 #a number between 0 and 1. It describes the fraction of a sorted-by-distance list of potential parents (in the parent_area), to use in selecting parents
self.number_of_parents_list = [1,1,1,1,1,1,1,1,2,2,3,3,3,4] # list containing numbers of parents. A sample is taken from this list to determine the number of parents of any given new_iteration vertex
self.click_map = {} # a dictionary with positions and vertex entries.
self.coretree = coretree
self.coretree.tree_link = self
self.selected = None
self.zoomlevel = 0.02
self.center = (0,0)
self.stepsize = 60
def draw(self) -> pygame.Surface:
"""Return a surface with the tech tree."""
return self.plot_total_tree(
self.vertex_dict,zoomlevel=self.zoomlevel,
center=self.center
)
def receive_click(self,event):
"""
Function that handles everything that is done when the plot is clicked. Takes a the arguments:
position which is the (x,y) position with (0,0) being the topleft corner of the plot.
click_type which mousebutton is clicked (usually 1 is left and 3 is right)
"""
position = event.pos
click_type = event.button
click_spot = pygame.Rect(position[0]-4,position[1]-4,8,8)
collision_test_result = click_spot.collidedict(self.click_map)
if collision_test_result is not None:
if click_type == 1:
if self.selected != collision_test_result[1]:
self.selected = collision_test_result[1]
if self.solar_system_object_link.current_player is not None:
if self.selected in self.solar_system_object_link.current_player.known_technologies:
destination = self.get_research_project(self.selected, self.solar_system_object_link.current_player.known_technologies)
if destination is not None:
self.solar_system_object_link.current_player.target_technology = destination["target_technology"]
self.solar_system_object_link.current_player.target_technology_cost = int(destination["distance"] * self.solar_system_object_link.technology_research_cost)
print_dict = {"text":self.solar_system_object_link.current_player.name + " selected to research from " + self.selected,"type":"general gameplay info"}
self.solar_system_object_link.messages.append(print_dict)
# self.solar_system_object_link.current_player.target_technology = self.selected
else:
self.solar_system_object_link.current_player.target_technology = None
print_dict = {"text":"Nothing useful can be discovered from " + self.selected,"type":"general gameplay info"}
self.solar_system_object_link.messages.append(print_dict)
else:
self.solar_system_object_link.current_player.target_technology = None
print_dict = {"text":self.selected + " is not known by " + self.solar_system_object_link.current_player.name + " and can not be used as origin of research","type":"general gameplay info"}
self.solar_system_object_link.messages.append(print_dict)
else:
self.center = ( self.center[0] - position[0] + global_variables.action_window_size[0]/2, self.center[1] - (position[1] - global_variables.action_window_size[1]/2))
elif click_type == 3:
self.center = ( self.center[0] - position[0] + global_variables.action_window_size[0]/2, self.center[1] - (position[1] - global_variables.action_window_size[1]/2))
if collision_test_result[1] != "common knowledge":
message_text = collision_test_result[1] + " - "
for put in ["input","output"]:
message_text = message_text + put + ": "
for resource in self.vertex_dict[collision_test_result[1]]["input_output_dict"][put]:
message_text = message_text + resource + ": " + str(self.vertex_dict[collision_test_result[1]]["input_output_dict"][put][resource]) + ", "
print_dict = {"text":message_text,"type":"general gameplay info"}
self.solar_system_object_link.messages.append(print_dict)
else:
print("DEBUGGING: Unkown click_type " + str(click_type) + " in technology tree. This should not be able to happen")
image = self.draw()
return image
def zoom(self, out: bool):
"""
Function that zooms the graph. Takes a character string denoting the direction
direction either "out" or "in"
"""
if out:
self.zoomlevel = self.zoomlevel * 2
self.center = (self.center[0]/2, self.center[1]/2)
else:
self.zoomlevel = self.zoomlevel / 2
self.center = (self.center[0]*2, self.center[1]*2)
def move(self,direction):
"""
Function that scrolls around the graph. Takes a character string denoting the direction
direction either "down","right","up", or "left"
"""
if direction == "down":
self.center = (self.center[0], self.center[1] - self.stepsize)
elif direction == "right":
self.center = (self.center[0] - self.stepsize, self.center[1])
elif direction == "up":
self.center = (self.center[0], self.center[1] + self.stepsize)
elif direction == "left":
self.center = (self.center[0] + self.stepsize, self.center[1])
else:
Exception("The direction " + str(direction) + " was not recognized")
def get_research_project(self,origin_technology_name,known_technology_names):
"""
Function that returns a research project, when given an origin and a list of known_technologies. The known_technologies is
just the list of known technologies as a list of strings. The origin is a string
with the name of a technology that is already known. The function will then select a child-technology from this. If any of
the children is already known by another company, and there are other children that are not - the already known children
will not be selected. If there still is more than one possibility, it will select randomly between the options.
If none is given as origin_technology, a random technology that has unknown children will be selected.
The function returns a dictionary with the keys:
target_technology the vertex targeted
distance the distance(or 'research points') to get there.
"""
known_technologies = {}
for known_technology_name in known_technology_names:
known_technologies[known_technology_name] = self.vertex_dict[known_technology_name]
#if no origin_technology is selected, a technology with unknown neighbours is selected
if origin_technology_name is None:
possible_origins = []
for technology_name in known_technologies:
technology = self.vertex_dict[known_technology_name]
for neighbour in technology["neighbours"]:
if neighbour["technology_name"] not in known_technology_names:
possible_origins.append(technology_name)
if len(possible_origins) < 1:
origin_technology_name = random.choice(known_technology_names)
if self.solar_system_object_link.message_printing["debugging"]:
print_dict = {"text":"DEBUGGING: There was a company that was not able to choose any origin technologies with unknown paths so a random known tech " + str(origin_technology) + " was chosen","type":"debugging"}
self.solar_system_object_link.messages.append(print_dict)
origin_technology_name = random.choice(possible_origins)
if origin_technology_name not in known_technology_names:
raise Exception("The origin_technology_name " + str(origin_technology_name) + " was not found among the known technologies for this company")
origin_technology_vertex = self.vertex_dict[origin_technology_name]
#making a list of potential targets from the chosen origin_technology_vertex
if len(origin_technology_vertex["neighbours"]) > 0:
potential_targets = []
for neighbour in origin_technology_vertex["neighbours"]:
if neighbour["technology_name"] not in known_technology_names:
potential_targets.append(neighbour)
else:
# print "DEBUGGING: The origin_technology selected: " + str(origin_technology_vertex["technology_name"]) + " does not have any connections to anything useful"
return None
if len(potential_targets) < 1:
# print "DEBUGGING: The origin_technology selected: " + str(origin_technology_vertex["technology_name"]) + " does not have any connections to anything that is not already known"
return None
#checking to see what connections from here are entirely unknown, and prioritize them if they exists.
potential_unknown_targets = []
for potential_target in potential_targets:
if len(potential_target["known_by"]) > 0:
potential_unknown_targets.append(potential_target)
if len(potential_unknown_targets) < 1:
# print "DEBUGGING: There were no potential entirely unknown targets, so a potential target that is known by other companies was chosen" #FIXME test this later
pass
else:
potential_targets = potential_unknown_targets
target_vertex = random.choice(potential_targets)
distance = self.calculate_cartesian_distance(origin_technology_vertex["cartesian_coordinates"],target_vertex["cartesian_coordinates"])
return {"target_technology":target_vertex,"distance":distance}
def check_technology_bid(self,known_technologies,technology):
"""
Function that checks if it is allowed to buy a given technology
The rules are that only technologies that could potentially be research_targets can be bought - ie.
it has to be connected to something known. On the other hand it can not be already known.
Returns "already known", "ok", or "too advanced".
"""
if technology["technology_name"] in list(known_technologies.keys()):
return "already known"
for neighbour in technology["neighbours"]:
if neighbour["technology_name"] in list(known_technologies.keys()):
return "ok"
return "too advanced"
def techtree_to_surface(self, surface, vertex_dict, center, zoomlevel, point_of_view = None):
"""
The main plotting function for rendering tech trees.
takes a surface and vertex_dixt, plus some positional info. It then renders the vertex_dict on the surface an returns it.
Arguments are:
surface the surface to draw on
vertex_dict the dictionary of all vertexes (must contain edges as well)
center the center point of the plot
zoomlevel the zoomlevel of the plot
point_of_view if None the entire tree is shown, otherwise the tree is shown from the point_of_view of the company_instance given
"""
#readying for creation of click-map later
self.click_map = {}
click_size = 5
#establishing which ones to plot
if point_of_view is None:
locally_known_vertices = vertex_dict
globally_known_vertices = []
unknown_vertices = []
else: #find the technologies than can shown for this company
locally_known_vertices = point_of_view.known_technologies
globally_known_vertices = []
unknown_vertices = []
for vertex_name in vertex_dict:
vertex = vertex_dict[vertex_name]
if len(vertex["known_by"]) > 0 and vertex_name not in locally_known_vertices:
globally_known_vertices.append(vertex_name)
if len(vertex["known_by"]) == 0:
unknown_vertices.append(vertex_name)
for vertex_name in vertex_dict:
vertex = vertex_dict[vertex_name]
coordinates = vertex["cartesian_coordinates"]
zoomed_coordinates = (coordinates[0] / zoomlevel, coordinates[1] / zoomlevel)
transposed_coordinates = (zoomed_coordinates[0] + center[0], -zoomed_coordinates[1] + center[1])
position = (int(transposed_coordinates[0]+global_variables.action_window_size[0]/2), int(transposed_coordinates[1]+global_variables.action_window_size[1]/2))
#Drawing up the edges first
if vertex_name in locally_known_vertices:
for neighbour in vertex["neighbours"]:
neighbour_coordinates = neighbour["cartesian_coordinates"]
neighbour_zoomed_coordinates = (neighbour_coordinates[0] / zoomlevel, neighbour_coordinates[1] / zoomlevel)
neighbour_transposed_coordinates = (neighbour_zoomed_coordinates[0] + center[0], -neighbour_zoomed_coordinates[1] + center[1])
neighbour_position = (int(neighbour_transposed_coordinates[0]+global_variables.action_window_size[0]/2), int(neighbour_transposed_coordinates[1]+global_variables.action_window_size[1]/2))
if neighbour["technology_name"] in locally_known_vertices or neighbour["technology_name"] in globally_known_vertices:
#draw edge in full
pygame.draw.line(surface,(100,100,100),position,neighbour_position,1)
else:
#draw dotted line indicating direction
delta_x = neighbour_transposed_coordinates[0] - transposed_coordinates[0]
delta_y = neighbour_transposed_coordinates[1] - transposed_coordinates[1]
polar_coordinate = self.cartesian_to_polar((delta_x,delta_y))
polar_coordinate_shortened = (3, polar_coordinate[1])
transposition = self.polar_to_cartesian(polar_coordinate_shortened)
pygame.draw.line(surface,(100,100,100),(position[0] + 2*transposition[0], position[1]+ 2*transposition[1]),(position[0] + 3*transposition[0] ,position[1] + 3*transposition[1]),1)
pygame.draw.line(surface,(100,100,100),(position[0] + 4*transposition[0], position[1]+ 4*transposition[1]),(position[0] + 5*transposition[0] ,position[1] + 5*transposition[1]),1)
pygame.draw.line(surface,(100,100,100),(position[0] + 6*transposition[0], position[1]+ 6*transposition[1]),(position[0] + 7*transposition[0] ,position[1] + 7*transposition[1]),1)
#Drawing the nodes that are known
if vertex_name in locally_known_vertices or vertex_name in globally_known_vertices:
if 0 < position[0] < global_variables.action_window_size[0] and 0 < position[1] < global_variables.action_window_size[1]:
click_rect = (position[0] - click_size, position[1] - click_size, 2 * click_size, 2 * click_size)
self.click_map[click_rect] = vertex_name
if vertex_name in locally_known_vertices:
colour = (255,0,0)
elif vertex_name in globally_known_vertices:
colour = (125,125,125)
else:
raise Exception("missing vertex")
pygame.draw.circle(surface,colour,position,6)
pygame.draw.circle(surface,(0,0,0),position,6,1)
#plotting labels that are not right next to the center.
time_units_included = max(global_variables.action_window_size[0]/2,global_variables.action_window_size[1]/2) * zoomlevel
if abs(vertex["polar_coordinates"][0]) > time_units_included * 0.3:
label = global_variables.standard_font_small.render(vertex_name,False,(0,0,0))
surface.blit(label,(int(position[0]),int(position[1])))
if vertex_name == self.selected:
pygame.draw.circle(surface,(255,255,255),position,5)
return surface
def plot_total_tree(self,vertex_dict,zoomlevel,center=(0,0)):
"""
Function that will first plot the distribution of subject areas, and then plot the new techs superimposed on them.
vertex_dict the vertices to plot. Will most often be the self.vertex_dict
zoomlevel time_units_per_pixel
center the center point. (0,0) is centered on origin.
"""
point_of_view = self.solar_system_object_link.current_player
#for testing point-of-view
# point_of_view_name = random.choice(self.solar_system_object_link.companies.keys())
# point_of_view = self.solar_system_object_link.companies[point_of_view_name]
# print "Chose " + str(point_of_view_name) + " for point of view"
surface = pygame.Surface((global_variables.action_window_size[0],global_variables.action_window_size[1]))
surface.fill((234,228,223))
background = self.coretree.render_technology_web(surface,zoomlevel,global_variables.action_window_size[0],global_variables.action_window_size[1],center)
foreground = self.techtree_to_surface(background,vertex_dict,center = center, zoomlevel = zoomlevel, point_of_view = point_of_view)
return background
def polar_to_cartesian(self,polar_coordinate):
"""
Converts polar (distance, direction) / (r, theta) to cartesian (x,y)
"""
direction_radians = math.radians(360-(polar_coordinate[1]-90))
x = polar_coordinate[0] * math.cos(direction_radians)
y = polar_coordinate[0] * math.sin(direction_radians)
return((x,y))
def cartesian_to_polar(self,cartesian_coordinate):
"""
Converts cartesian (x, y) to polar (distance, direction) / (r, theta)
"""
r = math.sqrt(cartesian_coordinate[0]**2+cartesian_coordinate[1]**2)
theta = math.atan2(cartesian_coordinate[0], cartesian_coordinate[1])
#theta = theta - math.pi / 2
theta_degrees = (int(math.degrees(theta)))
if theta_degrees < 0:
theta_degrees = theta_degrees + 360
return((r,theta_degrees))
def calculate_cartesian_distance(self,coordinate1,coordinate2):
"""
Calculates the distance between two cartesian coordinates
"""
delta_x = coordinate1[0] - coordinate2[0]
delta_y = coordinate1[1] - coordinate2[1]
distance = math.sqrt(delta_x ** 2 + delta_y ** 2)
return distance
def new_iteration(self,polar_coordinates):
"""
The function to add new technology to the tech tree. It works by receiving a location on the tree map (in
polar coordiates). This can be controlled by any other function in a random scattering fashion - presently it
is the implode_and_expand function that is the main controller.
For the set of polar coordinates given as
polar_coordinate (r, theta)
The new technology is created based on the data from the subject area in which it is found. It also is assigned
parents from the vertexes in the square formed between the center point and the new vertex. Priority will be given to
techs in the closer half of this square, but this can be controlled with the self.tendency_to_choose_forward_parents
variable in the init section.
The ID of the newly formed vertex is returned.
"""
new_technology = {}
# determining potential parents
cartesian_coordinates = self.polar_to_cartesian(polar_coordinates)
all_distances = {}
all_cartesian_positions = {}
all_polar_positions = {}
for vertex_name in self.vertex_dict:
vertex = self.vertex_dict[vertex_name]
distance_to_here = self.calculate_cartesian_distance(vertex["cartesian_coordinates"],cartesian_coordinates)
all_distances[distance_to_here] = vertex_name
all_cartesian_positions[vertex["cartesian_coordinates"]] = vertex_name
all_polar_positions[vertex["polar_coordinates"]] = vertex_name
distance_list = list(all_distances.keys())
distance_list.sort()
if distance_list[0] < 1:
# print "A vertex is at distance " + str(distance_list[0]) + " to the one being built - nothing was added. The polar coordinates were: " + str(polar_coordinates) + " and the distance_list was of length: " + str(len(distance_list))
return None
else:
#rotate all other points with the same amount
all_rotated_cartesian_positions = {}
for polar_position in all_polar_positions:
rotated_polar_position = (polar_position[0], polar_position[1] - (polar_coordinates[1] - 45))
all_rotated_cartesian_positions[self.polar_to_cartesian(rotated_polar_position)] = all_polar_positions[polar_position]
#potential parents
potential_parents = []
edge_of_square = polar_coordinates[0]* (1/math.sqrt(2))
#print "The square is (0,0), (0,",str(edge_of_square),"),(",str(edge_of_square),",",str(edge_of_square),"),(0,",str(edge_of_square),")"
for rotated_cartesian_position in all_rotated_cartesian_positions:
if 0 <= (rotated_cartesian_position[0]) <= edge_of_square:
if 0 <= (rotated_cartesian_position[1]) <= edge_of_square:
potential_parents.append(all_rotated_cartesian_positions[rotated_cartesian_position])
potential_parents_distances = {}
for distance in all_distances:
if all_distances[distance] in potential_parents:
potential_parents_distances[distance] = all_distances[distance]
parent_distance_list = list(potential_parents_distances.keys())
parent_distance_list.sort()
number_of_potential_parents = int(len(parent_distance_list)*self.tendency_to_choose_forward_parents)
if number_of_potential_parents >len(parent_distance_list):
number_of_potential_parents = len(parent_distance_list)
if self.solar_system_object_link.message_printing["debugging"]:
print_dict = {"text":"DEBUGGING: Don't use self.tendency_to_choose_forward_parents above 1","type":"debugging"}
self.solar_system_object_link.messages.append(print_dict)
parent_distance_list_shortened = parent_distance_list[0:number_of_potential_parents] #take the closest half
if len(parent_distance_list_shortened) == 0:
parent_distance_list_shortened = [parent_distance_list[0]]
close_potential_parents_list = []
for potential_parent_distance in potential_parents_distances:
if potential_parent_distance in parent_distance_list_shortened:
close_potential_parents_list.append(potential_parents_distances[potential_parent_distance])
#determine the type of technology
direction_dict = self.coretree.calculate_technology_web(polar_coordinates[0])
inverted_direction_dict = primitives.invert_dict(direction_dict)
inverted_direction_dict_keys = list(inverted_direction_dict.keys())
inverted_direction_dict_keys.sort()
for inverted_direction_dict_key in inverted_direction_dict_keys:
if inverted_direction_dict_key > polar_coordinates[1]:
found = True
break
else:
found = False
if not found:
key_of_interest = inverted_direction_dict_keys[len(inverted_direction_dict_keys)-1]
else:
key_of_interest = inverted_direction_dict_keys[inverted_direction_dict_keys.index(inverted_direction_dict_key)-1]
subject_name = inverted_direction_dict[key_of_interest][0]
for vertex in self.coretree.subject_list:
if vertex["technology_name"] == subject_name:
subject_vertex = vertex
new_technology["subject"] = subject_name
#determining the new technology name
not_unique = True
tries = 0
while not_unique:
technology_name = self.get_name_for_vertex(subject_vertex)
if technology_name not in list(self.vertex_dict.keys()):
not_unique = False
else:
if tries > 50:
technology_name = "RANDOM_" + str(random.randint(1000,9999))
raise Exception("DEBUGGING: DID NOT FIND A UNIQUE NAME in " + str(subject_name))
new_technology["technology_name"] = technology_name
# chose parents and number of parents randomly
number_of_parents = random.choice(self.number_of_parents_list)
if number_of_parents > len(close_potential_parents_list):
number_of_parents = len(close_potential_parents_list)
if number_of_parents < 1:
raise Exception("We have got an orphan")
selected_parents = random.sample(close_potential_parents_list,number_of_parents)
# print "selected_parent: " + str(selected_parents)
new_technology["neighbours"] = []
for selected_parent_name in selected_parents:
selected_parent = self.vertex_dict[selected_parent_name]
new_technology["neighbours"].append(selected_parent)
selected_parent["neighbours"].append(new_technology)
new_technology["polar_coordinates"] = polar_coordinates
new_technology["cartesian_coordinates"] = cartesian_coordinates
######################
#x<-seq(5,300,5)
#
#productivity_factor<-1
#
#input<-100 * ((x^(-0.2) + x * (-0.00)) / productivity_factor)
#output<-100 * (x^(0.2) + x * 0.001)
#
#plot(NULL,xlim=c(min(x),max(x)),ylim=c(0,max(max(input),max(output))))
#points(x=x,y=input,col="red")
#points(x=x,y=output,col="blue")
#generate input_output_dict
productivity_factor = 3 #multiplicator to the input vs output. The higher the more output per input in general
input_exponent = -0.5 # should be negative. The more negative it is, the sharper the drop in input price with advancednes
output_exponent = 0.2 # should be positive. The more positive it is, the sharper the increase in output with advancednes
output_multiplicator = 0.001 # should be zero or positive. Multiplied directily to the advanceness level, so this determines linear progression
break_even_radial_distance = 1 # can be used to alter the position of drops and plateus in tech return. Should probably be left to 1.
percent_randomness = 0.2 #how much difference there can be between different input and outputs
#add inherent productivity_multiplier in each technology
productivity_factor = productivity_factor * subject_vertex["productivity_multiplier"]
advancedness = polar_coordinates[0] / break_even_radial_distance
total_value = {}
total_value["input"] = 100 * ((advancedness ** input_exponent) / productivity_factor)
total_value["output"] = 100 * ((advancedness ** output_exponent) + advancedness * output_multiplicator)
input_output_dict = {}
for put in ["input","output"]:
put_dict = {}
for resource in subject_vertex["abstract_process_dict"][put]:
value_here = int(total_value[put] + ((random.random() - 0.5) * 2 * percent_randomness * total_value[put]))
if value_here < 0:
print(advancedness)
print(total_value)
raise Exception("Somehow the calculated value managed to become " + str(value_here) + " which is less than zero. Weird")
elif value_here == 0:
value_here = 1
put_dict[resource] = value_here
input_output_dict[put] = put_dict
input_output_dict["timeframe"] = 30 #FIXME
input_output_dict["byproducts"] = {}
new_technology["input_output_dict"] = input_output_dict
# calculating byproducts
# rule 1: the CO2 emission from everything that has fossil fuel as input is proportional to the coal input +/- X % randomness
percent_randomness = 0.2 # how many percent of ideal value, the final value can differ per resource - don't put more than 1.
if "fossil fuel" in list(input_output_dict["input"].keys()):
fossil_fuel_input = input_output_dict["input"]["fossil fuel"]
co2_emission = int(fossil_fuel_input + ((random.random() - 0.5) * 2 * percent_randomness * fossil_fuel_input))
new_technology["input_output_dict"]["byproducts"]["carbondioxide"] = co2_emission
# rule 2: the radioactive waste from everything that has fission source as input is proportional to the coal input +/- X % randomness (where X is high, to reflect the many various fission technologies)
percent_randomness = 0.8 # how many percent of ideal value, the final value can differ per resource - don't put more than 1.
if "fission source" in list(input_output_dict["input"].keys()):
fission_source_input = input_output_dict["input"]["fission source"]
radioactive_waste_emission = int(fission_source_input + ((random.random() - 0.5) * 2 * percent_randomness * fission_source_input))
new_technology["input_output_dict"]["byproducts"]["radioactive waste"] = radioactive_waste_emission
new_technology["known_by"] = {}
new_technology["for_sale_by"] = {}
self.vertex_dict[new_technology["technology_name"]] = new_technology
return new_technology["technology_name"]
def implode_and_expand(self,number_of_new_vertices = 150, start_with_standard_technologies=True):
"""
Function that adds new vertices. Arguments are:
number_of_new_vertices the number of new vertices to add. Will be added randomly, except for start_with_standard_technologies-cases
start_with_standard_technologies add a "standard technology" for each of the research areas available from the start.
"""
if start_with_standard_technologies: #then we check if they exist at time point "startout_value", and include them as "standard " + name.
startout_value = 5 #the number of steps out from the center that standard technologies are placed. It is fault checked so they are not too close, but this will change the value. Use larger values for many coretechs
technology_web = self.coretree.calculate_technology_web(startout_value)
#only needed because the list of coretechs is a list of lists
sorted_keys = []
for coretech in self.coretree.subject_list:
sorted_keys.append(coretech["technology_name"])
# getting the correct theta for each
for vertex in self.coretree.subject_list:
if vertex["importance_function"] is not None:
if vertex["technology_name"] in list(technology_web.keys()):
left_theta = technology_web[vertex["technology_name"]]
position_in_sorted_keys = sorted_keys.index(vertex["technology_name"])
neighbour = None
new_order_of_sorted_keys = sorted_keys[(position_in_sorted_keys+1):len(sorted_keys)] + sorted_keys[0:position_in_sorted_keys]
for potential_neighbour in new_order_of_sorted_keys:
if potential_neighbour in list(technology_web.keys()):
neighbour = potential_neighbour
break
right_theta = technology_web[neighbour]
#correcting for pos_eleven cases
is_at_pos_eleven = right_theta < left_theta
if is_at_pos_eleven:
theta = (left_theta + right_theta+360) /2
else:
theta = (left_theta + right_theta) /2
return_value = None
while return_value is None:
return_value = self.new_iteration((startout_value,theta))
if return_value is None:
startout_value = startout_value + 1
else:
technology_to_become_basic = self.vertex_dict[return_value]
technology_to_become_basic["known_by"] = "everybody"
technology_to_become_basic["technology_name"] = "basic " + technology_to_become_basic["subject"]
self.vertex_dict[technology_to_become_basic["technology_name"]] = technology_to_become_basic
del self.vertex_dict[return_value]
for i in range(0,number_of_new_vertices):
theta = random.randint(0,360)
r = i * random.random()
if start_with_standard_technologies:
r = r + startout_value
self.new_iteration((r,theta))
def get_name_for_vertex(self,subject_vertex):
"""
Methods to create a name for a given subject. Takes the information from the co_descriptors_dict
in the subject-vertex of interest
"""
adjectives = subject_vertex["co_descriptors"]["adjective"]
connecting_words = subject_vertex["co_descriptors"]["connecting_word"]
nouns = subject_vertex["co_descriptors"]["noun"]
percent_with_connecting_words = (len(connecting_words) * 200) / float(len(nouns) + len(adjectives))
if percent_with_connecting_words > random.randint(0,100):
if len(adjectives) == 0:
chosen_adjectives = ""
else:
chosen_adjectives = adjectives[random.randint(0,len(adjectives)-1)] + " "
if len(connecting_words) == 0:
chosen_connecting_words = ""
else:
chosen_connecting_words = connecting_words[random.randint(0,len(connecting_words)-1)] + " "
if len(nouns) == 0:
raise Exception("No noun found for " + subject_vertex["technology_name"] + " it is not possible to create a name without")
else:
chosen_nouns = nouns[random.randint(0,len(nouns)-1)]
technology_name = chosen_adjectives + chosen_connecting_words + chosen_nouns
else:
if len(adjectives) == 0:
chosen_adjectives = ""
else:
chosen_adjectives = adjectives[random.randint(0,len(adjectives)-1)] + " "
if len(nouns) == 0:
raise Exception("No noun found for " + subject_vertex["technology_name"] + " it is not possible to create a name without")
else:
chosen_nouns = nouns[random.randint(0,len(nouns)-1)]
technology_name = chosen_adjectives + chosen_nouns
return str(technology_name)
class Backbone_Tree(Tree):
"""
A subclass of Tree that defines the core directions of technology.
It contains a variable self.subject_list, which is an ordered list containing the technology subjects
and their attached data as dictionaries. The import_core function reads a xml file at the location specified in init.
The link_crossovers function, places the technologies next to each over based on their crossover value in the xml file
(this is useful for putting related subjects next to each other).
Other than that its main functions are to plot the subject areas on the tech tree
"""
def __init__(self):
self.subject_list = []
self.import_core(os.path.join(os.getcwd(),"data","technology","technology.txt"))
self.link_crossovers()
def import_core(self,parsed_file_name):
"""
Function that will read in the xml file given as argument and add it to the core tech graph
A core tech graph consists of a center vertex (initiated in __init__) and the core techs surrounding it. They are read from the
parsed_file_name xml file.
"""
parsed_file = minidom.parse(parsed_file_name)
entries = parsed_file.getElementsByTagName("subject")
for entry in entries:
#getting title
core_title_domlist = entry.getElementsByTagName("title")
if len(core_title_domlist) > 1 or len(core_title_domlist) == 0:
raise Exception("There is zero or more than one title for one of the subjects")
core_title = str(core_title_domlist[0].childNodes[0].data)
#getting productivity_multiplier
core_productivity_multiplier_domlist = entry.getElementsByTagName("productivity_multiplier")
if len(core_productivity_multiplier_domlist) > 1 or len(core_productivity_multiplier_domlist) == 0:
raise Exception("There is zero or more than one productivity_multiplier for one of the subjects")
core_productivity_multiplier = float(core_productivity_multiplier_domlist[0].childNodes[0].data)
#getting abstract_process_dict
abstract_process_dict_dom = entry.getElementsByTagName("abstract_process_dict")
if len(abstract_process_dict_dom) > 1 or len(abstract_process_dict_dom) == 0:
raise Exception("There is more or less than one abstract_process_dict for one of the subjects")
abstract_process_dict = {}
for put in ["input","output"]:
put_domlist = abstract_process_dict_dom[0].getElementsByTagName(put)
put_list = []
if len(put_domlist) == 0:
raise Exception("There is no " + put + " value for the subject " + core_title)
for put_entry in put_domlist:
if len(put_entry.childNodes) > 0:
unicode_text = put_entry.childNodes[0].data
put_list.append(str(unicode_text))
abstract_process_dict[put] = put_list
#getting co_descriptors
co_descriptors_dict_dom = entry.getElementsByTagName("co_descriptors")
if len(co_descriptors_dict_dom) > 1 or len(abstract_process_dict_dom) == 0:
raise Exception("There is more or less than one co_descriptors for one of the subjects")
co_descriptors_dict = {}
for type in ["connecting_word","adjective","noun"]:
type_domlist = co_descriptors_dict_dom[0].getElementsByTagName(type)
type_list = []
for type_entry in type_domlist:
if len(type_entry.childNodes) > 0:
unicode_text = type_entry.childNodes[0].data
type_list.append(str(unicode_text))
co_descriptors_dict[type] = type_list
#getting crossover_dict
crossover_dict_dom = entry.getElementsByTagName("crossover_dict")
if len(crossover_dict_dom) == 0:
raise Exception("There is no crossover_dict for one of the subjects")
crossover_dict = {}
crossover_domlist = crossover_dict_dom[0].getElementsByTagName("crossover")
for type_entry in crossover_domlist:
crossover_target_dom = type_entry.getElementsByTagName("crossover_target")
if len(crossover_target_dom) > 1 or len(crossover_target_dom) == 0:
raise Exception("There is " + str(len(crossover_target_dom)) + " crossover_target_dom for " + str(core_title))
crossover_target = crossover_target_dom[0].childNodes[0].data
crossover_weight_dom = type_entry.getElementsByTagName("crossover_weight")
if len(crossover_weight_dom) > 1 or len(crossover_weight_dom) == 0:
raise Exception("There is more or less than one crossover_weight_dom for one of the crossovers")
crossover_weight = crossover_weight_dom[0].childNodes[0].data
crossover_dict[str(crossover_target)] = int(crossover_weight)
#importing importance_function
importance_function_dom = entry.getElementsByTagName("importance_function")
if len(importance_function_dom) > 1 or len(importance_function_dom) == 0:
raise Exception("There is more or less than one importance_function for one of the subjects")
importance_function = {}
for type in ["a_value","b_value","c_value"]:
type_domlist = importance_function_dom[0].getElementsByTagName(type)
if len(type_domlist) == 1:
for type_entry in type_domlist:
if len(type_entry.childNodes) == 1:
unicode_entry = type_entry.childNodes[0].data
string_entry = str(unicode_entry)
float_entry = float(string_entry)
else:
raise Exception("There is " + str(len(type_domlist)) + " entries in " + type + " in importance_functions for " + core_title)
else:
raise Exception("There is " + str(len(type_entry.childNodes)) + " entries in " + type + " in importance_functions for " + core_title)
importance_function[type] = float_entry
self.add_core_vertex(label=core_title,abstract_process_dict=abstract_process_dict,co_descriptors=co_descriptors_dict,crossover_dict=crossover_dict,importance_function=importance_function,productivity_multiplier=core_productivity_multiplier)
parsed_file.unlink()
def calculate_technology_web(self,time_unit):
"""
Function to calculate which core_technology is chosen at a specific time_unit position.
Takes the time_unit position, which has the same unit as given to the formulas in the importance_function.
Outputs a dictionary with technology names as keys and the theta value of the left border as value.
"""
theta_list = {}
importance_vector = []
for vertex in self.subject_list:
a_value = vertex["importance_function"]["a_value"]
b_value = vertex["importance_function"]["b_value"]
c_value = vertex["importance_function"]["c_value"]
importance_here = (time_unit ** 2) * a_value + time_unit * b_value + c_value
if importance_here < 0:
importance_here = 0
importance_vector.append(importance_here)
total_importance_value_at_this_time = float(sum(importance_vector)) #making it float to avoid stupid division round errors
if total_importance_value_at_this_time <= 0:
raise Exception("The total_importance_value_at_this_time was " + str(total_importance_value_at_this_time))
importance_in_the_circle_before_here = 0
for i, vertex in enumerate(self.subject_list):
relative_importance_in_degrees_here = (360 * importance_vector[i]) / total_importance_value_at_this_time
if relative_importance_in_degrees_here > 0:
theta_list[vertex["technology_name"]] = importance_in_the_circle_before_here
importance_in_the_circle_before_here = importance_in_the_circle_before_here + relative_importance_in_degrees_here
return theta_list
def render_technology_web(self,surface,zoomlevel,width,height,center=(0,0)):
"""
Paints the contents of the importance_dict. Takes the following arguments:
surface a surface to paint to
zoomlevel time_units_per_pixel
width width of the plot in pixels
height height of the plot in pixels
center the center of the plot. Give (0,0) for having the origin centered on the map
"""
#calculating the span of time units to calculate
top_right_corner_cartesian = (center[0] + width/2, center[1] + height/2)
top_left_corner_cartesian = (center[0] - width/2, center[1] + height/2)
bottom_right_corner_cartesian = (center[0] + width/2, center[1] - height/2)
bottom_left_corner_cartesian = (center[0] - width/2, center[1] - height/2)
top_right_corner_polar = self.cartesian_to_polar(top_right_corner_cartesian)
top_left_corner_polar = self.cartesian_to_polar(top_left_corner_cartesian)
bottom_right_corner_polar = self.cartesian_to_polar(bottom_right_corner_cartesian)
bottom_left_corner_polar = self.cartesian_to_polar(bottom_left_corner_cartesian)
max_radius_in_pixels = max(top_right_corner_polar[0],top_left_corner_polar[0],bottom_right_corner_polar[0],bottom_left_corner_polar[0])
min_radius_in_pixels = max(0,min(top_right_corner_polar[0],top_left_corner_polar[0],bottom_right_corner_polar[0],bottom_left_corner_polar[0]) - max(width,height)) #divide because of the cases where corners are farther than all of the edges
max_theta = max(top_right_corner_polar[1],top_left_corner_polar[1],bottom_right_corner_polar[1],bottom_left_corner_polar[1])
min_theta = min(top_right_corner_polar[1],top_left_corner_polar[1],bottom_right_corner_polar[1],bottom_left_corner_polar[1])
if abs(center[0]) < width/2 and abs(center[1]) < height/2: #when the origin is on screen
min_radius_in_pixels = 0
max_theta = 360
min_theta = 0
max_radius_in_time_units = max_radius_in_pixels * zoomlevel
min_radius_in_time_units = min_radius_in_pixels * zoomlevel
resolution_pixels_per_draw = 10.0 # pixels per point on plot
resolution_timeunits_per_draw = resolution_pixels_per_draw * float(zoomlevel) # time_units per point on plot
steps_to_calculate = int(math.ceil(max_radius_in_time_units / resolution_timeunits_per_draw))
#creating a list of time_intervals of interest
time_intervals = []
for i in range(steps_to_calculate):
time_interval = min_radius_in_time_units + i * resolution_timeunits_per_draw
time_intervals.append(time_interval)
total_theta_dict = {} #what a great name! Basically just a dict with theta values for each technology_name at each time step
for vertex in self.subject_list:
total_theta_dict[vertex["technology_name"]] = {}
for time_unit in time_intervals:
theta_dict = self.calculate_technology_web(time_unit)
for vertex_name in theta_dict:
total_theta_dict[vertex_name][time_unit] = theta_dict[vertex_name]
for vertex_id, vertex in enumerate(self.subject_list):
cartesian_list = []
for i, time_unit in enumerate(time_intervals):
if time_unit not in list(total_theta_dict[vertex["technology_name"]].keys()): #when the curve should not be drawn anymore
#most of the time this will be true
theta = None
#but we check if it is a an end of line