-
Notifications
You must be signed in to change notification settings - Fork 253
/
Copy pathkitti_mots.py
426 lines (380 loc) · 21.9 KB
/
kitti_mots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
import os
import csv
import numpy as np
from scipy.optimize import linear_sum_assignment
from ._base_dataset import _BaseDataset
from .. import utils
from .. import _timing
from ..utils import TrackEvalException
class KittiMOTS(_BaseDataset):
"""Dataset class for KITTI MOTS tracking"""
@staticmethod
def get_default_dataset_config():
"""Default class config values"""
code_path = utils.get_code_path()
default_config = {
'GT_FOLDER': os.path.join(code_path, 'data/gt/kitti/kitti_mots_val'), # Location of GT data
'TRACKERS_FOLDER': os.path.join(code_path, 'data/trackers/kitti/kitti_mots_val'), # Trackers location
'OUTPUT_FOLDER': None, # Where to save eval results (if None, same as TRACKERS_FOLDER)
'TRACKERS_TO_EVAL': None, # Filenames of trackers to eval (if None, all in folder)
'CLASSES_TO_EVAL': ['car', 'pedestrian'], # Valid: ['car', 'pedestrian']
'SPLIT_TO_EVAL': 'val', # Valid: 'training', 'val'
'INPUT_AS_ZIP': False, # Whether tracker input files are zipped
'PRINT_CONFIG': True, # Whether to print current config
'TRACKER_SUB_FOLDER': 'data', # Tracker files are in TRACKER_FOLDER/tracker_name/TRACKER_SUB_FOLDER
'OUTPUT_SUB_FOLDER': '', # Output files are saved in OUTPUT_FOLDER/tracker_name/OUTPUT_SUB_FOLDER
'TRACKER_DISPLAY_NAMES': None, # Names of trackers to display, if None: TRACKERS_TO_EVAL
'SEQMAP_FOLDER': None, # Where seqmaps are found (if None, GT_FOLDER)
'SEQMAP_FILE': None, # Directly specify seqmap file (if none use seqmap_folder/split_to_eval.seqmap)
'SEQ_INFO': None, # If not None, directly specify sequences to eval and their number of timesteps
'GT_LOC_FORMAT': '{gt_folder}/label_02/{seq}.txt', # format of gt localization
}
return default_config
def __init__(self, config=None):
"""Initialise dataset, checking that all required files are present"""
super().__init__()
# Fill non-given config values with defaults
self.config = utils.init_config(config, self.get_default_dataset_config(), self.get_name())
self.gt_fol = self.config['GT_FOLDER']
self.tracker_fol = self.config['TRACKERS_FOLDER']
self.split_to_eval = self.config['SPLIT_TO_EVAL']
self.should_classes_combine = False
self.use_super_categories = False
self.data_is_zipped = self.config['INPUT_AS_ZIP']
self.output_fol = self.config['OUTPUT_FOLDER']
if self.output_fol is None:
self.output_fol = self.tracker_fol
self.tracker_sub_fol = self.config['TRACKER_SUB_FOLDER']
self.output_sub_fol = self.config['OUTPUT_SUB_FOLDER']
# Get classes to eval
self.valid_classes = ['car', 'pedestrian']
self.class_list = [cls.lower() if cls.lower() in self.valid_classes else None
for cls in self.config['CLASSES_TO_EVAL']]
if not all(self.class_list):
raise TrackEvalException('Attempted to evaluate an invalid class. '
'Only classes [car, pedestrian] are valid.')
self.class_name_to_class_id = {'car': '1', 'pedestrian': '2', 'ignore': '10'}
# Get sequences to eval and check gt files exist
self.seq_list, self.seq_lengths = self._get_seq_info()
if len(self.seq_list) < 1:
raise TrackEvalException('No sequences are selected to be evaluated.')
# Check gt files exist
for seq in self.seq_list:
if not self.data_is_zipped:
curr_file = self.config["GT_LOC_FORMAT"].format(gt_folder=self.gt_fol, seq=seq)
if not os.path.isfile(curr_file):
print('GT file not found ' + curr_file)
raise TrackEvalException('GT file not found for sequence: ' + seq)
if self.data_is_zipped:
curr_file = os.path.join(self.gt_fol, 'data.zip')
if not os.path.isfile(curr_file):
raise TrackEvalException('GT file not found: ' + os.path.basename(curr_file))
# Get trackers to eval
if self.config['TRACKERS_TO_EVAL'] is None:
self.tracker_list = os.listdir(self.tracker_fol)
else:
self.tracker_list = self.config['TRACKERS_TO_EVAL']
if self.config['TRACKER_DISPLAY_NAMES'] is None:
self.tracker_to_disp = dict(zip(self.tracker_list, self.tracker_list))
elif (self.config['TRACKERS_TO_EVAL'] is not None) and (
len(self.config['TRACKER_DISPLAY_NAMES']) == len(self.tracker_list)):
self.tracker_to_disp = dict(zip(self.tracker_list, self.config['TRACKER_DISPLAY_NAMES']))
else:
raise TrackEvalException('List of tracker files and tracker display names do not match.')
for tracker in self.tracker_list:
if self.data_is_zipped:
curr_file = os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol + '.zip')
if not os.path.isfile(curr_file):
print('Tracker file not found: ' + curr_file)
raise TrackEvalException('Tracker file not found: ' + tracker + '/' + os.path.basename(curr_file))
else:
for seq in self.seq_list:
curr_file = os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol, seq + '.txt')
if not os.path.isfile(curr_file):
print('Tracker file not found: ' + curr_file)
raise TrackEvalException(
'Tracker file not found: ' + tracker + '/' + self.tracker_sub_fol + '/' + os.path.basename(
curr_file))
def get_display_name(self, tracker):
return self.tracker_to_disp[tracker]
def _get_seq_info(self):
seq_list = []
seq_lengths = {}
seqmap_name = 'evaluate_mots.seqmap.' + self.config['SPLIT_TO_EVAL']
if self.config["SEQ_INFO"]:
seq_list = list(self.config["SEQ_INFO"].keys())
seq_lengths = self.config["SEQ_INFO"]
else:
if self.config["SEQMAP_FILE"]:
seqmap_file = self.config["SEQMAP_FILE"]
else:
if self.config["SEQMAP_FOLDER"] is None:
seqmap_file = os.path.join(self.config['GT_FOLDER'], seqmap_name)
else:
seqmap_file = os.path.join(self.config["SEQMAP_FOLDER"], seqmap_name)
if not os.path.isfile(seqmap_file):
print('no seqmap found: ' + seqmap_file)
raise TrackEvalException('no seqmap found: ' + os.path.basename(seqmap_file))
with open(seqmap_file) as fp:
reader = csv.reader(fp)
for i, _ in enumerate(reader):
dialect = csv.Sniffer().sniff(fp.read(1024))
fp.seek(0)
reader = csv.reader(fp, dialect)
for row in reader:
if len(row) >= 4:
seq = "%04d" % int(row[0])
seq_list.append(seq)
seq_lengths[seq] = int(row[3]) + 1
return seq_list, seq_lengths
def _load_raw_file(self, tracker, seq, is_gt):
"""Load a file (gt or tracker) in the KITTI MOTS format
If is_gt, this returns a dict which contains the fields:
[gt_ids, gt_classes] : list (for each timestep) of 1D NDArrays (for each det).
[gt_dets]: list (for each timestep) of lists of detections.
[gt_ignore_region]: list (for each timestep) of masks for the ignore regions
if not is_gt, this returns a dict which contains the fields:
[tracker_ids, tracker_classes] : list (for each timestep) of 1D NDArrays (for each det).
[tracker_dets]: list (for each timestep) of lists of detections.
"""
# Only loaded when run to reduce minimum requirements
from pycocotools import mask as mask_utils
# File location
if self.data_is_zipped:
if is_gt:
zip_file = os.path.join(self.gt_fol, 'data.zip')
else:
zip_file = os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol + '.zip')
file = seq + '.txt'
else:
zip_file = None
if is_gt:
file = self.config["GT_LOC_FORMAT"].format(gt_folder=self.gt_fol, seq=seq)
else:
file = os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol, seq + '.txt')
# Ignore regions
if is_gt:
crowd_ignore_filter = {2: ['10']}
else:
crowd_ignore_filter = None
# Load raw data from text file
read_data, ignore_data = self._load_simple_text_file(file, crowd_ignore_filter=crowd_ignore_filter,
is_zipped=self.data_is_zipped, zip_file=zip_file,
force_delimiters=' ')
# Convert data to required format
num_timesteps = self.seq_lengths[seq]
data_keys = ['ids', 'classes', 'dets']
if is_gt:
data_keys += ['gt_ignore_region']
raw_data = {key: [None] * num_timesteps for key in data_keys}
# Check for any extra time keys
current_time_keys = [str(t) for t in range(num_timesteps)]
extra_time_keys = [x for x in read_data.keys() if x not in current_time_keys]
if len(extra_time_keys) > 0:
if is_gt:
text = 'Ground-truth'
else:
text = 'Tracking'
raise TrackEvalException(
text + ' data contains the following invalid timesteps in seq %s: ' % seq + ', '.join(
[str(x) + ', ' for x in extra_time_keys]))
for t in range(num_timesteps):
time_key = str(t)
# list to collect all masks of a timestep to check for overlapping areas
all_masks = []
if time_key in read_data.keys():
try:
raw_data['dets'][t] = [{'size': [int(region[3]), int(region[4])],
'counts': region[5].encode(encoding='UTF-8')}
for region in read_data[time_key]]
raw_data['ids'][t] = np.atleast_1d([region[1] for region in read_data[time_key]]).astype(int)
raw_data['classes'][t] = np.atleast_1d([region[2] for region in read_data[time_key]]).astype(int)
all_masks += raw_data['dets'][t]
except IndexError:
self._raise_index_error(is_gt, tracker, seq)
except ValueError:
self._raise_value_error(is_gt, tracker, seq)
else:
raw_data['dets'][t] = []
raw_data['ids'][t] = np.empty(0).astype(int)
raw_data['classes'][t] = np.empty(0).astype(int)
if is_gt:
if time_key in ignore_data.keys():
try:
time_ignore = [{'size': [int(region[3]), int(region[4])],
'counts': region[5].encode(encoding='UTF-8')}
for region in ignore_data[time_key]]
raw_data['gt_ignore_region'][t] = mask_utils.merge([mask for mask in time_ignore],
intersect=False)
all_masks += [raw_data['gt_ignore_region'][t]]
except IndexError:
self._raise_index_error(is_gt, tracker, seq)
except ValueError:
self._raise_value_error(is_gt, tracker, seq)
else:
raw_data['gt_ignore_region'][t] = mask_utils.merge([], intersect=False)
# check for overlapping masks
if all_masks:
masks_merged = all_masks[0]
for mask in all_masks[1:]:
if mask_utils.area(mask_utils.merge([masks_merged, mask], intersect=True)) != 0.0:
raise TrackEvalException(
'Tracker has overlapping masks. Tracker: ' + tracker + ' Seq: ' + seq + ' Timestep: ' + str(
t))
masks_merged = mask_utils.merge([masks_merged, mask], intersect=False)
if is_gt:
key_map = {'ids': 'gt_ids',
'classes': 'gt_classes',
'dets': 'gt_dets'}
else:
key_map = {'ids': 'tracker_ids',
'classes': 'tracker_classes',
'dets': 'tracker_dets'}
for k, v in key_map.items():
raw_data[v] = raw_data.pop(k)
raw_data["num_timesteps"] = num_timesteps
raw_data['seq'] = seq
return raw_data
@_timing.time
def get_preprocessed_seq_data(self, raw_data, cls):
""" Preprocess data for a single sequence for a single class ready for evaluation.
Inputs:
- raw_data is a dict containing the data for the sequence already read in by get_raw_seq_data().
- cls is the class to be evaluated.
Outputs:
- data is a dict containing all of the information that metrics need to perform evaluation.
It contains the following fields:
[num_timesteps, num_gt_ids, num_tracker_ids, num_gt_dets, num_tracker_dets] : integers.
[gt_ids, tracker_ids]: list (for each timestep) of 1D NDArrays (for each det).
[gt_dets, tracker_dets]: list (for each timestep) of lists of detection masks.
[similarity_scores]: list (for each timestep) of 2D NDArrays.
Notes:
General preprocessing (preproc) occurs in 4 steps. Some datasets may not use all of these steps.
1) Extract only detections relevant for the class to be evaluated (including distractor detections).
2) Match gt dets and tracker dets. Remove tracker dets that are matched to a gt det that is of a
distractor class, or otherwise marked as to be removed.
3) Remove unmatched tracker dets if they fall within a crowd ignore region or don't meet a certain
other criteria (e.g. are too small).
4) Remove gt dets that were only useful for preprocessing and not for actual evaluation.
After the above preprocessing steps, this function also calculates the number of gt and tracker detections
and unique track ids. It also relabels gt and tracker ids to be contiguous and checks that ids are
unique within each timestep.
KITTI MOTS:
In KITTI MOTS, the 4 preproc steps are as follow:
1) There are two classes (car and pedestrian) which are evaluated separately.
2) There are no ground truth detections marked as to be removed/distractor classes.
Therefore also no matched tracker detections are removed.
3) Ignore regions are used to remove unmatched detections (at least 50% overlap with ignore region).
4) There are no ground truth detections (e.g. those of distractor classes) to be removed.
"""
# Check that input data has unique ids
self._check_unique_ids(raw_data)
cls_id = int(self.class_name_to_class_id[cls])
data_keys = ['gt_ids', 'tracker_ids', 'gt_dets', 'tracker_dets', 'similarity_scores']
data = {key: [None] * raw_data['num_timesteps'] for key in data_keys}
unique_gt_ids = []
unique_tracker_ids = []
num_gt_dets = 0
num_tracker_dets = 0
for t in range(raw_data['num_timesteps']):
# Only extract relevant dets for this class for preproc and eval (cls)
gt_class_mask = np.atleast_1d(raw_data['gt_classes'][t] == cls_id)
gt_class_mask = gt_class_mask.astype(np.bool)
gt_ids = raw_data['gt_ids'][t][gt_class_mask]
gt_dets = [raw_data['gt_dets'][t][ind] for ind in range(len(gt_class_mask)) if gt_class_mask[ind]]
tracker_class_mask = np.atleast_1d(raw_data['tracker_classes'][t] == cls_id)
tracker_class_mask = tracker_class_mask.astype(np.bool)
tracker_ids = raw_data['tracker_ids'][t][tracker_class_mask]
tracker_dets = [raw_data['tracker_dets'][t][ind] for ind in range(len(tracker_class_mask)) if
tracker_class_mask[ind]]
similarity_scores = raw_data['similarity_scores'][t][gt_class_mask, :][:, tracker_class_mask]
# Match tracker and gt dets (with hungarian algorithm)
unmatched_indices = np.arange(tracker_ids.shape[0])
if gt_ids.shape[0] > 0 and tracker_ids.shape[0] > 0:
matching_scores = similarity_scores.copy()
matching_scores[matching_scores < 0.5 - np.finfo('float').eps] = -10000
match_rows, match_cols = linear_sum_assignment(-matching_scores)
actually_matched_mask = matching_scores[match_rows, match_cols] > 0 + np.finfo('float').eps
match_cols = match_cols[actually_matched_mask]
unmatched_indices = np.delete(unmatched_indices, match_cols, axis=0)
# For unmatched tracker dets, remove those that are greater than 50% within a crowd ignore region.
unmatched_tracker_dets = [tracker_dets[i] for i in range(len(tracker_dets)) if i in unmatched_indices]
ignore_region = raw_data['gt_ignore_region'][t]
intersection_with_ignore_region = self._calculate_mask_ious(unmatched_tracker_dets, [ignore_region],
is_encoded=True, do_ioa=True)
is_within_ignore_region = np.any(intersection_with_ignore_region > 0.5 + np.finfo('float').eps, axis=1)
# Apply preprocessing to remove unwanted tracker dets.
to_remove_tracker = unmatched_indices[is_within_ignore_region]
data['tracker_ids'][t] = np.delete(tracker_ids, to_remove_tracker, axis=0)
data['tracker_dets'][t] = np.delete(tracker_dets, to_remove_tracker, axis=0)
similarity_scores = np.delete(similarity_scores, to_remove_tracker, axis=1)
# Keep all ground truth detections
data['gt_ids'][t] = gt_ids
data['gt_dets'][t] = gt_dets
data['similarity_scores'][t] = similarity_scores
unique_gt_ids += list(np.unique(data['gt_ids'][t]))
unique_tracker_ids += list(np.unique(data['tracker_ids'][t]))
num_tracker_dets += len(data['tracker_ids'][t])
num_gt_dets += len(data['gt_ids'][t])
# Re-label IDs such that there are no empty IDs
if len(unique_gt_ids) > 0:
unique_gt_ids = np.unique(unique_gt_ids)
gt_id_map = np.nan * np.ones((np.max(unique_gt_ids) + 1))
gt_id_map[unique_gt_ids] = np.arange(len(unique_gt_ids))
for t in range(raw_data['num_timesteps']):
if len(data['gt_ids'][t]) > 0:
data['gt_ids'][t] = gt_id_map[data['gt_ids'][t]].astype(np.int)
if len(unique_tracker_ids) > 0:
unique_tracker_ids = np.unique(unique_tracker_ids)
tracker_id_map = np.nan * np.ones((np.max(unique_tracker_ids) + 1))
tracker_id_map[unique_tracker_ids] = np.arange(len(unique_tracker_ids))
for t in range(raw_data['num_timesteps']):
if len(data['tracker_ids'][t]) > 0:
data['tracker_ids'][t] = tracker_id_map[data['tracker_ids'][t]].astype(np.int)
# Record overview statistics.
data['num_tracker_dets'] = num_tracker_dets
data['num_gt_dets'] = num_gt_dets
data['num_tracker_ids'] = len(unique_tracker_ids)
data['num_gt_ids'] = len(unique_gt_ids)
data['num_timesteps'] = raw_data['num_timesteps']
data['seq'] = raw_data['seq']
data['cls'] = cls
# Ensure again that ids are unique per timestep after preproc.
self._check_unique_ids(data, after_preproc=True)
return data
def _calculate_similarities(self, gt_dets_t, tracker_dets_t):
similarity_scores = self._calculate_mask_ious(gt_dets_t, tracker_dets_t, is_encoded=True, do_ioa=False)
return similarity_scores
@staticmethod
def _raise_index_error(is_gt, tracker, seq):
"""
Auxiliary method to raise an evaluation error in case of an index error while reading files.
:param is_gt: whether gt or tracker data is read
:param tracker: the name of the tracker
:param seq: the name of the seq
:return: None
"""
if is_gt:
err = 'Cannot load gt data from sequence %s, because there are not enough ' \
'columns in the data.' % seq
raise TrackEvalException(err)
else:
err = 'Cannot load tracker data from tracker %s, sequence %s, because there are not enough ' \
'columns in the data.' % (tracker, seq)
raise TrackEvalException(err)
@staticmethod
def _raise_value_error(is_gt, tracker, seq):
"""
Auxiliary method to raise an evaluation error in case of an value error while reading files.
:param is_gt: whether gt or tracker data is read
:param tracker: the name of the tracker
:param seq: the name of the seq
:return: None
"""
if is_gt:
raise TrackEvalException(
'GT data for sequence %s cannot be converted to the right format. Is data corrupted?' % seq)
else:
raise TrackEvalException(
'Tracking data from tracker %s, sequence %s cannot be converted to the right format. '
'Is data corrupted?' % (tracker, seq))